Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490â493 (1959).
Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219â1223 (1987).
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606â612 (1996).
Nair-Roberts, R. G. et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152, 1024â1031 (2008).
Arias-Carrión, O. & PÅppel, E. Dopamine, learning, and reward-seeking behavior. Acta Neurobiol. Exp. 67, 481â488 (2007).
Steinberg, E. E. et al. A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16, 966â973 (2013).
Giros, B., El Mestikawy, S., Bertrand, L. & Caron, M. G. Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 295, 149â154 (1991).
Gu, H., Wall, S. C. & Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269, 7124â7130 (1994).
Krueger, B. K. Kinetics and block of dopamine uptake in synaptosomes from rat caudate nucleus. J. Neurochem. 55, 260â267 (1990).
Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726â730 (2007).
Waldman, I. D. et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am. J. Hum. Genet. 63, 1767â1776 (1998).
Gainetdinov, R. R. & Caron, M. G. Monoamine transporters: from genes to behavior. Annu. Rev. Pharmacol. Toxicol. 43, 261â284 (2003).
Sulzer, D., Sonders, M. S., Poulsen, N. W. & Galli, A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406â433 (2005).
Ciccarone, D. Stimulant abuse: pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim. Care 38, 41â58 (2011).
Mustaquim, D., Jones, C. M. & Compton, W. M. Trends and correlates of cocaine use among adults in the United States, 2006â2019. Addict. Behav. 120, 106950 (2021).
Kuhar, M. J., Ritz, M. C. & Boja, J. W. The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci. 14, 299â302 (1991).
Woolverton, W. L., Hecht, G. S., Agoston, G. E., Katz, J. L. & Newman, A. H. Further studies of the reinforcing effects of benztropine analogs in rhesus monkeys. Psychopharmacology 154, 375â382 (2001).
Newman, A. H., Allen, A. C., Izenwasser, S. & Katz, J. L. Novel 3 alpha-(diphenylmethoxy)tropane analogs: potent dopamine uptake inhibitors without cocaine-like behavioral profiles. J. Med. Chem. 37, 2258â2261 (1994).
Rothman, R. B., Baumann, M. H., Prisinzano, T. E. & Newman, A. H. Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem. Pharmacol. 75, 2â16 (2008).
Desai, R. I., Kopajtic, T. A., Koffarnus, M., Newman, A. H. & Katz, J. L. Identification of a dopamine transporter ligand that blocks the stimulant effects of cocaine. J. Neurosci. 25, 1889â1893 (2005).
Vocci, F. J., Acri, Jane & Elkashef, A. Medication development for addictive disorders: the state of the science. Am. J. Psychiatry 162, 1432â1440 (2005).
Biederman, J. Attention-deficit/hyperactivity disorder: a life-span perspective. J. Clin. Psychiatry 59, 4â16 (1998).
Jaeschke, R. R., Sujkowska, E. & Sowa-KuÄma, M. Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology 238, 2667â2691 (2021).
Volkow, N. D. et al. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am. J. Psychiatry 155, 1325â1331 (1998).
Solanto, M. V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav. Brain Res. 94, 127â152 (1998).
Volkow, N. D. & Swanson, J. M. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am. J. Psychiatry 160, 1909â1918 (2003).
Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85â90 (2013).
Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322â327 (2015).
Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012â1022 (2023).
Wei, Y. et al. Transport mechanism and pharmacology of the human GlyT1. Cell 187, 1719â1732.e1714 (2024).
Coleman, J. A. et al. Serotonin transporterâibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141â145 (2019).
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Clâ-dependent neurotransmitter transporters. Nature 437, 215â223 (2005).
Li, L. B. et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J. Biol. Chem. 279, 21012â21020 (2004).
Boudanova, E., Navaroli, D. M., Stevens, Z. & Melikian, H. E. Dopamine transporter endocytic determinants: carboxy terminal residues critical for basal and PKC-stimulated internalization. Mol. Cell. Neurosci. 39, 211â217 (2008).
Fog, J. U. et al. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51, 417â429 (2006).
Navaroli, D. M. et al. The plasma membrane-associated GTPase Rin interacts with the dopamine transporter and is required for protein kinase C-regulated dopamine transporter trafficking. J. Neurosci. 31, 13758â13770 (2011).
Volkow, N. D. et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J. Neurosci. 21, RC121 (2001).
Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G. & Ding, Y.-S. Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci. 58, PL231âPL239 (1996).
Rothman, R. B. et al. GBR12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacol. Biochem. Behav. 40, 387â397 (1991).
Andersen, P. H. Biochemical and pharmacological characterization of [3H]GBR 12935 binding in vitro to rat striatal membranes: labeling of the dopamine uptake complex. J. Neurochem. 48, 1887â1896 (1987).
Andersen, P. H. The dopamine uptake inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur. J. Pharmacol. 166, 493â504 (1989).
Heikkila, R. E. & Manzino, L. Behavioral properties of GBR 12909, GBR 13069 and GBR 13098: specific inhibitors of dopamine uptake. Eur. J. Pharmacol. 103, 241â248 (1984).
Andersen, P. H. The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur. J. Pharmacol. 166, 493â504 (1989).
Hiranita, T., Soto, P. L., Newman, A. H. & Katz, J. L. Assessment of reinforcing effects of benztropine analogs and their effects on cocaine self-administration in rats: comparisons with monoamine uptake inhibitors. J. Pharmacol. Exp. Ther. 329, 677â686 (2009).
Kopajtic, T. A. et al. Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability. J. Pharmacol. Exp. Ther. 335, 703â714 (2010).
Velázquez-Sánchez, C., Ferragud, A., Murga, J., Cardá, M. & Canales, J. J. The high affinity dopamine uptake inhibitor, JHW 007, blocks cocaine-induced reward, locomotor stimulation and sensitization. Eur. Neuropsychopharmacol. 20, 501â508 (2010).
Katz, J. L., Kopajtic, T. A., Agoston, G. E. & Newman, A. H. Effects of N-substituted analogs of benztropine: diminished cocaine-like effects in dopamine transporter ligands. J. Pharmacol. Exp. Ther. 309, 650â660 (2004).
Bisgaard, H. et al. The binding sites for benztropines and dopamine in the dopamine transporter overlap. Neuropharmacology 60, 182â190 (2011).
Beuming, T. et al. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11, 780â789 (2008).
Niello, M. et al. Persistent binding at dopamine transporters determines sustained psychostimulant effects. Proc. Natl Acad. Sci. USA 120, e2114204120 (2023).
Desai, R. I., Kopajtic, T. A., French, D., Newman, A. H. & Katz, J. L. Relationship between in vivo occupancy at the dopamine transporter and behavioral effects of cocaine, GBR 12909 [1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine], and benztropine analogs. J. Pharmacol. Exp. Ther. 315, 397â404 (2005).
Gorentla, B. K. & Vaughan, R. A. Differential effects of dopamine and psychoactive drugs on dopamine transporter phosphorylation and regulation. Neuropharmacology 49, 759â768 (2005).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290â296 (2017).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126â2132 (2004).
Pettersen, E. F. et al. UCSF Chimeraâa visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605â1612 (2004).
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213â221 (2010).
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531â544 (2018).
DeLano, W. L. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82â92 (2002).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676â682 (2012).