Wednesday, September 11, 2024
No menu items!
HomeNatureA polymer-like ultrahigh-strength metal alloy

A polymer-like ultrahigh-strength metal alloy

  • Matloff, L. Y. et al. How flight feathers stick together to form a continuous morphing wing. Science 367, 293–297 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shape shifters. Royal Aeronautical Society www.aerosociety.com/news/shape-shifters/ (2021).

  • Tawfick, S. & Tang, Y. Stronger artificial muscles, with a twist. Science 365, 125–126 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashby, M. Materials Selection in Mechanical Design (Elsevier, 2011).

  • Hao, S. et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339, 1191–1194 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, J., Wang, D., Gao, Y., Zhang, T.-Y. & Wang, Y. Linear-superelastic metals by controlled strain release via nanoscale concentration-gradient engineering. Mater. Today 33, 17–23 (2020).

    Article 

    Google Scholar
     

  • Liu, C. et al. A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength. Nat. Mater. 21, 1003–1007 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, S. et al. Non-Hookean large elastic deformation in bulk crystalline metals. Nat. Commun. 13, 5307 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odaira, T. et al. Flexible and tough superelastic Co–Cr alloys for biomedical applications. Adv. Mater. 34, 2202305 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Peng, J. & Snyder, G. J. A figure of merit for flexibility. Science 366, 690–691 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, M. Exceptional properties by design. Science 339, 1161–1162 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Simultaneously increasing the strength and decreasing the modulus in TiNi alloys via plastic deformation. Scr. Mater. 209, 114374 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, C.-T. et al. Machine learning recommends affordable new Ti alloy with bone-like modulus. Mater. Today 34, 41–50 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, S. et al. Quasi‐linear superelasticity with ultralow modulus in tensile cyclic deformed TiNi strain glass. Adv. Eng. Mater. 24, 2200239 (2022).

    Article 

    Google Scholar
     

  • Wu, G., Chan, K.-C., Zhu, L., Sun, L. & Lu, J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 545, 80–83 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Q. et al. Strain states and unique properties in cold-rolled TiNi shape memory alloys. Acta Mater. 231, 117890 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hua, P., Xia, M., Onuki, Y. & Sun, Q. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nat. Nanotechnol. 16, 409–413 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, W. et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 363, 972–975 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 91–95 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, B. B. et al. High dislocation density–induced large ductility in deformed and partitioned steels. Science 357, 1029–1032 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zakikhani, P., Zahari, R., Sultan, M. T. H. & Majid, D. L. Extraction and preparation of bamboo fibre-reinforced composites. Mater. Des. 63, 820–828 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Abdul Khalil, H. P. S. et al. Bamboo fibre reinforced biocomposites: a review. Mater. Des. 42, 353–368 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Moniruzzaman, M., Chattopadhyay, J., Billups, W. E. & Winey, K. I. Tuning the mechanical properties of SWNT/nylon 6,10 composites with flexible spacers at the interface. Nano Lett. 7, 1178–1185 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Preparation of polyurethane/polyvinyl alcohol hydrogel and its performance enhancement via compositing with silver particles. RSC Adv. 7, 46480–46485 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Otsuka, K. & Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater Sci. 50, 511–678 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y., Chen, X., Dabade, V., Shield, T. W. & James, R. D. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85–88 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, J. et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286–290 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, H. et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366, 1116–1121 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrett, R. M. & Barrett, C. M. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings. Smart Mater. Struct. 23, 074011 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gandhi, F. & Anusonti-Inthra, P. Skin design studies for variable camber morphing airfoils. Smart Mater. Struct. 17, 015025 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sarkar, S., Ren, X. & Otsuka, K. Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x. Phys. Rev. Lett. 95, 205702 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, D., Wang, Y., Zhang, Z. & Ren, X. Modeling abnormal strain states in ferroelastic systems: the role of point defects. Phys. Rev. Lett. 105, 205702 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ji, Y. et al. in Encyclopedia of Condensed Matter Physics 2nd edn (ed. Chakraborty, T.) 388–403 (Academic Press, 2024).

  • Chen, Y. et al. Revealing the mode and strain of reversible twinning in B19′ martensite by in situ synchrotron X-ray diffraction. Acta Mater. 236, 118131 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moberly, W. J., Proft, J. L., Duerig, T. W. & Sinclair, R. Deformation, twinning and thermo-mechanical strengthening of Ti50Ni47Fe3. Acta Metall. Mater. 38, 2601–2612 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Å ittner, P. et al. On the coupling between martensitic transformation and plasticity in NiTi: experiments and continuum based modelling. Prog. Mater Sci. 98, 249–298 (2018).

    Article 

    Google Scholar
     

  • Molnárová, O., Tyc, O., Heller, L., Seiner, H. & Å ittner, P. Evolution of martensitic microstructures in nanocrystalline NiTi wires deformed in tension. Acta Mater. 218, 117166 (2021).

    Article 

    Google Scholar
     

  • Seiner, H., Sedlák, P., Frost, M. & Å ittner, P. Kwinking as the plastic forming mechanism of B19′ NiTi martensite. Int. J. Plast. 168, 103697 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Molnárová, O., Klinger, M., Duchoň, J., Seiner, H. & Å ittner, P. Plastic deformation of B19’ monoclinic martensite in NiTi shape memory alloys: HRTEM analysis of interfaces in martensite variant microstructures. Acta Mater. 258, 119242 (2023).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Recoverability of large strains and deformation twinning in martensite during tensile deformation of NiTi shape memory alloy polycrystals. Acta Mater. 180, 243–259 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y., Ren, X. & Otsuka, K. Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivity. Phys. Rev. Lett. 123, 137601 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morawiec, H., Stróż, D., Goryczka, T. & Chrobak, D. Two-stage martensitic transformation in a deformed and annealed NiTi alloy. Scr. Mater. 35, 485–490 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Spontaneous strain glass to martensite transition in a Ti50Ni44.5Fe5.5 strain glass. Phys. Rev. B 84, 214201 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hertzberg, R. W., Vinci, R. P. & Hertzberg, J. L. Deformation and Fracture Mechanics of Engineering Materials. Fatigue Design (John Wiley & Sons, Inc., 2013).

  • Liu, Y., Houver, I., Xiang, H., Bataillard, L. & Miyazaki, S. Strain dependence of pseudoelastic hysteresis of NiTi. Metall. Mater. Trans. A 30, 1275–1282 (1999).

    Article 

    Google Scholar
     

  • Chen, H. et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement. Scr. Mater. 162, 230–234 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Chen, T., Li, W., Bednarcik, J. & Dippel, A.-C. High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling. Mater. Des. 193, 108875 (2020).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments