Sunday, October 20, 2024
No menu items!
HomeNatureA nebular origin for the persistent radio emission of fast radio bursts

A nebular origin for the persistent radio emission of fast radio bursts

  • Zhang, B. The physics of fast radio bursts. Rev. Mod. Phys. 95, 035005 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, C. H. et al. A repeating fast radio burst associated with a persistent radio source. Nature 606, 873–877 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margalit, B. & Metzger, B. D. A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion–electron wind nebula. Astrophys. J. Lett. 868, L4 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. R. Astron. Soc. 491, 740–757 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y.-P., Lu, W., Feng, Y., Zhang, B. & Li, D. Temporal scattering, depolarization, and persistent radio emission from magnetized inhomogeneous environments near repeating fast radio burst sources. Astrophys. J. Lett. 928, L16 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sridhar, N. & Metzger, B. D. Radio nebulae from hyperaccreting X-ray binaries as common-envelope precursors and persistent counterparts of fast radio bursts. Astrophys. J. 937, 5 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y.-P., Li, Q.-C. & Zhang, B. Are persistent emission luminosity and rotation measure of fast radio bursts related? Astrophys. J. 895, 7 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chime/FRB Collaboration. Recent high activity from a repeating fast radio burst discovered by CHIME/FRB. The Astronomer’s Telegram 14497, 1 (2021).

    ADS 

    Google Scholar
     

  • Lanman, A. E. et al. A sudden period of high activity from repeating fast radio burst 20201124a. Astrophys. J. 927, 59 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nimmo, K. et al. Milliarcsecond localization of the repeating FRB 20201124A. Astrophys. J. Lett. 927, L3 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Piro, L. et al. The fast radio burst FRB 20201124A in a star-forming region: constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys. 656, L15 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, Y. et al. Mapping obscured star formation in the host galaxy of FRB 20201124A. Astrophys. J. 961, 44 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Marcote, B. et al. VLBI localization of FRB 20201124A and absence of persistent emission on milliarcsecond scales. The Astronomer’s Telegram 14603, 1 (2021).

    ADS 

    Google Scholar
     

  • Fong, W.-f et al. Chronicling the host galaxy properties of the remarkable repeating FRB 20201124A. Astrophys. J. Lett. 919, L23 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ravi, V. et al. The host galaxy and persistent radio counterpart of FRB 20201124A. Mon. Not. R. Astron. Soc. 513, 982–990 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murase, K., Kashiyama, K. & Mészáros, P. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants. Mon. Not. R. Astron. Soc. 461, 1498–1511 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Margalit, B. et al. Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. Mon. Not. R. Astron. Soc. 481, 2407–2426 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • CASA Team et al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Carrasco, E. et al. MEGARA, the R=6000-20000 IFU and MOS of GTC. Proc. SPIE 10702, 1070216 (2018).


    Google Scholar
     

  • de Paz, A. G. et al. First scientific observations with MEGARA at GTC. Proc. SPIE 10702, 1070217 (2018).


    Google Scholar
     

  • Pascual, S., Cardiel, N., Picazo-Sanchez, P., Castillo-Morales, A. & de Paz, A. G. guaix-ucm/megaradrp: v0.12.0. Zenodo https://doi.org/10.5281/zenodo.6043992 (2022).

  • Chamorro-Cazorla, M. et al. MEGADES: MEGARA galaxy disc evolution survey. Astron. Astrophys. 670, A117 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Oke, J. B. Faint spectrophotometric standard stars. Astron. J. 99, 1621–1631 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Beelen, A. et al. 350 μm dust emission from high-redshift quasars. Astrophys. J. 642, 694–701 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • da Cunha, E. et al. On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schreiber, C. et al. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4. Astron. Astrophys. 609, A30 (2018).

    Article 

    Google Scholar
     

  • Lamperti, I. et al. JINGLE – V. Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting. Mon. Not. R. Astron. Soc. 489, 4389–4417 (2019).

    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Osterbrock, D. E. & Ferland, G. J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei 2nd edn (University Science Books, 2005).

  • Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Klein, U. & Emerson, D. T. A survey of the distributions of 2.8 cm radio continuum in nearby galaxies. Astron. Astrophys. 94, 29–44 (1981).

    ADS 

    Google Scholar
     

  • Gioia, I. M., Gregorini, L. & Klein, U. High frequency radio continuum observations of bright spiral galaxies. Astron. Astrophys. 116, 164–174 (1982).

    ADS 

    Google Scholar
     

  • Tabatabaei, F. S. et al. The radio spectral energy distribution and star-formation rate calibration in galaxies. Astrophys. J. 836, 185 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kennicutt, J. & Robert, C. Structural properties of giant H II regions in nearby galaxies. Astrophys. J. 287, 116–130 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conti, P. S. & Crowther, P. A. MSX mid-infrared imaging of massive star birth environments – II. Giant H II regions. Mon. Not. R. Astron. Soc. 355, 899–917 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, L. D. et al. The WISE catalog of galactic H II regions. Astrophys. J. Suppl. Ser. 212, 1 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, L. D., Bania, T. M., Balser, D. S. & Rood, R. T. The Green Bank Telescope H II region discovery survey. II. The source catalog. Astrophys. J. Suppl. Ser. 194, 32 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Murphy, E. J. et al. Calibrating extinction-free star formation rate diagnostics with 33 GHz free–free emission in NGC 6946. Astrophys. J. 737, 67 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Quataert, E. & Gruzinov, A. Constraining the accretion rate onto Sagittarius A* using linear polarization. Astrophys. J. 545, 842–846 (2000).

    Article 
    ADS 

    Google Scholar
     

  • McQuinn, M. Locating the “missing” baryons with extragalactic dispersion measure estimates. Astrophys. J. Lett. 780, L33 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Xu, H. et al. A fast radio burst source at a complex magnetized site in a barred galaxy. Nature 609, 685–688 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Draine, B. T. Physics of the Interstellar and Intergalactic Medium (Princeton Univ. Press, 2011).

  • Reynolds, S. P., Gaensler, B. M. & Bocchino, F. Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231–261 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Richards, E. A. The nature of radio emission from distant galaxies: the 1.4 GHz observations. Astrophys. J. 533, 611–630 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Chiaraluce, E. et al. From radio-quiet to radio-silent: low-luminosity Seyfert radio cores. Mon. Not. R. Astron. Soc. 485, 3185–3202 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Panessa, F. et al. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 3, 387–396 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Behar, E., Vogel, S., Baldi, R. D., Smith, K. L. & Mushotzky, R. F. The mm-wave compact component of an AGN. Mon. Not. R. Astron. Soc. 478, 399–406 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chen, S., Laor, A., Behar, E., Baldi, R. D. & Gelfand, J. D. The radio emission in radio-quiet quasars: the VLBA perspective. Mon. Not. R. Astron. Soc. 525, 164–182 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laor, A. & Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 390, 847–862 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • The Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • Petroff, E. et al. FRBCAT: the fast radio burst catalogue. Publ. Astron. Soc. Aust. 33, e045 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Spitler, L. G. et al. Fast radio burst discovered in the Arecibo pulsar ALFA survey. Astrophys. J. 790, 101 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 834, L7 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • The CHIME/FRB Collaboration et al. CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. Lett. 885, L24 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Marcote, B. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 557, 190–194 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bannister, K. W. et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365, 565–570 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prochaska, J. X. et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 365, aay0073 (2019).


    Google Scholar
     

  • Anna-Thomas, R. et al. Magnetic field reversal in the turbulent environment around a repeating fast radio burst. Science 380, 599–603 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhardwaj, M. et al. A nearby repeating fast radio burst in the direction of M81. Astrophys. J. Lett. 910, L18 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirsten, F. et al. A repeating fast radio burst source in a globular cluster. Nature 602, 585–589 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhandari, S. et al. A nonrepeating fast radio burst in a dwarf host galaxy. Astrophys. J. 948, 67 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y.-K. et al. FAST observations of FRB 20220912A: burst properties and polarization characteristics. Astrophys. J. 955, 142 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hewitt, D. M. Milliarcsecond localization of the hyperactive repeating FRB 20220912A. Mon. Not. R. Astron. Soc. 529, 1814–1826 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petroff, E. et al. A polarized fast radio burst at low Galactic latitude. Mon. Not. R. Astron. Soc. 469, 4465–4482 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Keane, E. F. et al. The host galaxy of a fast radio burst. Nature 530, 453–456 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravi, V. et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249–1252 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhandari, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Caleb, M. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts – III. Polarization properties of FRBs 160102 and 151230. Mon. Not. R. Astron. Soc. 478, 2046–2055 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Osłowski, S. et al. Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Mon. Not. R. Astron. Soc. 488, 868–875 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Connor, L. et al. A bright, high rotation-measure FRB that skewers the M33 halo. Mon. Not. R. Astron. Soc. 499, 4716–4724 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments