Thursday, July 3, 2025
No menu items!
HomeNatureStereodivergent transformation of a natural polyester to enantiopure PHAs

Stereodivergent transformation of a natural polyester to enantiopure PHAs

  • Vishakha, S. K., Kishor, D. B. & Sudha, S. R. Natural polymers–a comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 3, 1597–1613 (2012).


    Google Scholar
     

  • Muhammadi, Shabina, Afzal, M. & Hameed, S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem. Lett. Rev. 8, 56–77 (2015).

    Article 

    Google Scholar
     

  • Tutoni, G. G. et al. Microfluidic assembly of degradable, stereocomplexed hydrogel Microparticles. J. Am. Chem. Soc. 146, 14705–14714 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popowski, Y., Lu, Y., Coates, G. W. & Tolman, W. B. Stereocomplexation of stereoregular aliphatic polyesters: change from amorphous to semicrystalline polymers with single stereocenter inversion. J. Am. Chem. Soc. 144, 8362–8370 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auriemma, F. et al. Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers. Angew. Chem. Int. Ed. 54, 1215–1218 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hori, Y., Suzuki, M., Yamaguchi, A. & Nishishita, T. Ring-opening polymerization of optically active β-butyrolactone using distannoxane catalysts: synthesis of high-molecular-weight poly(3-hydroxybutyrate). Macromolecules 26, 5533–5534 (1993).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zheng, Y. & Pan, P. Crystallization of biodegradable and biobased polyesters: polymorphism, cocrystallization, and structure-property relationship. Prog. Polym. Sci. 109, 101291 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Worch, J. C. et al. Stereochemical enhancement of polymer properties. Nat. Rev. Chem. 3, 514–535 (2019).

    Article 
    CAS 

    Google Scholar
     

  • García, F., Gómez, R. & Sánchez, L. Chiral supramolecular polymers. Chem. Soc. Rev. 52, 7524–7548 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Shen, J. & Okamoto, Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev. 116, 1094–1138 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kakuchi, T. & Sakai, R. in Encyclopedia Polymer Science Technology Vol. 3, 1–32 (Wiley, 2014).

  • Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westlie, A. H., Quinn, E. C., Parker, C. R. & Chen, E. Y.-X. Synthetic biodegradable polyhydroxyalkanoates (PHAs): recent advances and future challenges. Prog. Polym. Sci. 134, 101608 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Anjum, A. et al. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89, 161–174 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudesh, K., Abe, H. & Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Shoda, S. I., Uyama, H., Kadokawa, J. I., Kimura, S. & Kobayashi, S. Enzymes as green catalysts for precision macromolecular synthesis. Chem. Rev. 116, 2307–2413 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, S. & Makino, A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 109, 5288–5353 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G. et al. Asymmetric kinetic resolution polymerization. Coord. Chem. Rev. 414, 213296 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Young, M. S., LaPointe, A. M., MacMillan, S. N. & Coates, G. W. Highly enantioselective polymerization of β-butyrolactone by a bimetallic magnesium catalyst: an interdependent relationship between favored and unfavored enantiomers. J. Am. Chem. Soc. 146, 18032–18040 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H.-Y. et al. Spiro-salen catalysts enable the chemical synthesis of stereoregular polyhydroxyalkanoates. Nat. Catal. 6, 720–728 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Beletskaya, I. P., Najera, C. & Yus, M. Stereodivergent catalysis. Chem. Rev. 118, 5080–5200 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krautwald, S. & Carreira, E. M. Stereodivergence in asymmetric catalysis. J. Am. Chem. Soc. 139, 5627–5639 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinn, E. C. et al. Installing controlled stereo-defects yields semicrystalline and biodegradable poly(3-hydroxybutyrate) with high toughness and optical clarity. J. Am. Chem. Soc. 145, 5795–5802 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruckmoser, J., Pongratz, S., Stieglitz, L. & Rieger, B. Highly isoselective ring-opening polymerization of rac-β-butyrolactone: access to synthetic poly(3-hydroxybutyrate) with polyolefin-like material properties. J. Am. Chem. Soc. 145, 11494–11498 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, X. et al. Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol and polyolefin-like properties. Angew. Chem. Int. Ed. 59, 7881–7890 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Grassie, N., Murray, E. J. & Holmes, P. A. The thermal degradation of poly(-(D)-β-hydroxybutyric acid): part 3—the reaction mechanism. Polym. Degrad. Stab. 6, 127–134 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Morikawa, H. & Marchessault, R. H. Pyrolysis of bacterial polyalkanoates. Can. J. Chem. 59, 2306–2313 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. et al. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science 380, 64–69 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhou, Z., LaPointe, A. M., Shaffer, T. D. & Coates, G. W. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks. Nat. Chem. 15, 856–861 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z., LaPointe, A. M. & Coates, G. W. Atactic, isotactic, and syndiotactic methylated polyhydroxybutyrates: an unexpected series of isomorphic polymers. J. Am. Chem. Soc. 145, 25983–25988 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J.-C., Yang, J., Li, W.-B., Lu, X.-B. & Liu, Y. Carbonylative polymerization of epoxides mediated by tri-metallic complexes: a dual catalysis strategy for synthesis of biodegradable polyhydroxyalkanoates. Angew. Chem. Int. Ed. 61, e202116208 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Furutate, S. et al. Superior thermal stability and fast crystallization behavior of a novel, biodegradable α-methylated bacterial polyester. npg Asia Mater. 13, 31 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tanahashi, N. & Doi, Y. Thermal properties and stereoregularity of poly(3-hydroxybutyrate) prepared from optically active β-butyrolactone with a zinc-based catalyst. Macromolecules 24, 5732–5733 (1991).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zhang, Y., Gross, R. A. & Lenz, R. W. Stereochemistry of the ring-opening polymerization of (S)-β-butyrolactone. Macromolecules 23, 3206–3212 (1990).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Rieth, L. R., Moore, D. R., Lobkovsky, E. B. & Coates, G. W. Single-site β-diiminate zinc catalysts for the ring-opening polymerization of β-butyrolactone and β-valerolactone to poly(3-hydroxyalkanoates). J. Am. Chem. Soc. 124, 15239–15248 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shakaroun, R. M., Jéhan, P., Alaaeddine, A., Carpentier, J. F. & Guillaume, S. M. Organocatalyzed ring-opening polymerization (ROP) of functional β-lactones: new insights into the ROP mechanism and poly(hydroxyalkanoate)s (PHAs) macromolecular structure. Polym. Chem. 11, 2640–2652 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jedlinski, Z. et al. Stereochemical control in the anionic polymerization of β-butyrolactone initiated with alkali-metal alkoxides. Macromolecules 29, 3773–3777 (1996).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kurcok, P., Kowalczuk, M., Hennek, K. & Jedlinski, Z. Anionic polymerization of β-lactones initiated with alkali-metal alkoxides: reinvestigation of the polymerization mechanism. Macromolecules 25, 2017–2020 (1992).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Li, Z., Zhao, D., Shen, Y. & Li, Z. Ring-opening polymerization of enantiopure bicyclic ether-ester monomers toward closed-loop recyclable and crystalline stereoregular polyesters via chemical upcycling of bioplastic. Angew. Chem. Int. Ed. 62, e202302101 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Amgoune, A., Thomas, C. M., Ilinca, S., Roisnel, T. & Carpentier, J. Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β‐butyrolactone. Angew. Chem. Int. Ed. 45, 2782–2784 (2006).

    Article 
    CAS 

    Google Scholar
     

  • De Winter, J., Coulembier, O., Gerbaux, P. & Dubois, P. High molecular weight poly(α,α′,β-trisubstituted β-lactones) as generated by metal-free phosphazene catalysts. Macromolecules 43, 10291–10296 (2010).

    Article 

    Google Scholar
     

  • Fráter, G., Müller, U. & Günther, W. The stereoselective α-alkylation of chiral β-hydroxy esters and some applications thereof. Tetrahedron 40, 1269–1277 (1984).

    Article 

    Google Scholar
     

  • Tutoni, G. & Becker, M. L. Underexplored stereocomplex polymeric scaffolds with improved thermal and mechanical properties. Macromolecules 53, 10303–10314 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Im, S. H. et al. Stereocomplex polylactide for drug delivery and biomedical applications: a review. Molecules 26, 2846 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, X. & Chen, E. Y.-X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Amgoune, A., Thomas, C. M., Roisnel, T. & Carpentier, J.-F. Ring‐opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy‐amino‐bisphenolate ligands: combining high activity, productivity, and selectivity. Chem. Eur. J. 12, 169–179 (2006).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments