Thursday, May 15, 2025
No menu items!
HomeNatureWireless transmission of internal hazard signals in Li-ion batteries

Wireless transmission of internal hazard signals in Li-ion batteries

  • Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article 
    CAS 

    Google Scholar
     

  • UL Solutions. Lithium-ion battery incident reporting. UL Solutions https://www.ul.com/insights/lithium-ion-battery-incident-reporting (2024).

  • Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2017).

    Article 

    Google Scholar
     

  • Deng, J., Bae, C., Marcicki, J., Masias, A. & Miller, T. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat. Energy 3, 261–266 (2018).

    Article 

    Google Scholar
     

  • Zhu, Y. et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 10, 2067 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waldmann, T. et al. A mechanical aging mechanism in lithium-ion batteries. J. Electrochem. Soc. 161, A1742–A1747 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pfrang, A. et al. Geometrical inhomogeneities as cause of mechanical failure in commercial 18650 lithium ion cells. J. Electrochem. Soc. 166, A3745–A3752 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Willenberg, L. et al. The development of jelly roll deformation in 18650 lithium-ion batteries at low state of charge. J. Electrochem. Soc. 167, 120502 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Finegan, D. P. et al. Identifying the cause of rupture of Li-ion batteries during thermal runaway. Adv. Sci. 5, 1700369 (2018).

    Article 

    Google Scholar
     

  • Pfrang, A. et al. Deformation from formation until end of life: micro X-ray computed tomography of silicon alloy containing 18650 Li-ion cells. J. Electrochem. Soc. 170, 030548 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tranter, T. G., Timms, R., Shearing, P. R. & Brett, D. J. L. Communication—Prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection. J. Electrochem. Soc. 167, 160544 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heenan, T. M. M. et al. Mapping internal temperatures during high-rate battery applications. Nature 617, 507–512 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziesche, R. F. et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. Nat. Commun. 11, 777 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G. et al. In situ measurement of radial temperature distributions in cylindrical Li-ion cells. J. Electrochem. Soc. 161, A1499–A1507 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. Reaction temperature sensing (RTS)-based control for Li-ion battery safety. Sci. Rep. 5, 18237 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albero Blanquer, L. et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13, 1153 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, Z. et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium–sulfur batteries. Energy Environ. Sci. 15, 2029–2038 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mei, W. et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5, 674–683 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Deciphering advanced sensors for life and safety monitoring of lithium batteries. Adv. Energy Mater. 14, 2304173 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, S. et al. A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries. J. Power Sources 456, 227981 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor. Acta Mech. Sin. 37, 895–901 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, S. et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors. J. Power Sources 516, 230669 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Noelle, D. J., Wang, M. & Qiao, Y. Improved safety and mechanical characterizations of thick lithium-ion battery electrodes structured with porous metal current collectors. J. Power Sources 399, 125–132 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article 

    Google Scholar
     

  • Chatzakis, J., Kalaitzakis, K., Voulgaris, N. C. & Manias, S. N. Designing a new generalized battery management system. IEEE Trans. Ind. Electron. 50, 990–999 (2003).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments