Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).
UL Solutions. Lithium-ion battery incident reporting. UL Solutions https://www.ul.com/insights/lithium-ion-battery-incident-reporting (2024).
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2017).
Deng, J., Bae, C., Marcicki, J., Masias, A. & Miller, T. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat. Energy 3, 261–266 (2018).
Zhu, Y. et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 10, 2067 (2019).
Waldmann, T. et al. A mechanical aging mechanism in lithium-ion batteries. J. Electrochem. Soc. 161, A1742–A1747 (2014).
Pfrang, A. et al. Geometrical inhomogeneities as cause of mechanical failure in commercial 18650 lithium ion cells. J. Electrochem. Soc. 166, A3745–A3752 (2019).
Willenberg, L. et al. The development of jelly roll deformation in 18650 lithium-ion batteries at low state of charge. J. Electrochem. Soc. 167, 120502 (2020).
Finegan, D. P. et al. Identifying the cause of rupture of Li-ion batteries during thermal runaway. Adv. Sci. 5, 1700369 (2018).
Pfrang, A. et al. Deformation from formation until end of life: micro X-ray computed tomography of silicon alloy containing 18650 Li-ion cells. J. Electrochem. Soc. 170, 030548 (2023).
Tranter, T. G., Timms, R., Shearing, P. R. & Brett, D. J. L. Communication—Prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection. J. Electrochem. Soc. 167, 160544 (2020).
Heenan, T. M. M. et al. Mapping internal temperatures during high-rate battery applications. Nature 617, 507–512 (2023).
Ziesche, R. F. et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. Nat. Commun. 11, 777 (2020).
Zhang, G. et al. In situ measurement of radial temperature distributions in cylindrical Li-ion cells. J. Electrochem. Soc. 161, A1499–A1507 (2014).
Zhang, G. et al. Reaction temperature sensing (RTS)-based control for Li-ion battery safety. Sci. Rep. 5, 18237 (2015).
Albero Blanquer, L. et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13, 1153 (2022).
Miao, Z. et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium–sulfur batteries. Energy Environ. Sci. 15, 2029–2038 (2022).
Mei, W. et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 (2023).
Huang, J. et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5, 674–683 (2020).
Wang, W. et al. Deciphering advanced sensors for life and safety monitoring of lithium batteries. Adv. Energy Mater. 14, 2304173 (2024).
Zhu, S. et al. A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries. J. Power Sources 456, 227981 (2020).
Yang, L. et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor. Acta Mech. Sin. 37, 895–901 (2021).
Zhu, S. et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors. J. Power Sources 516, 230669 (2021).
Noelle, D. J., Wang, M. & Qiao, Y. Improved safety and mechanical characterizations of thick lithium-ion battery electrodes structured with porous metal current collectors. J. Power Sources 399, 125–132 (2018).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Chatzakis, J., Kalaitzakis, K., Voulgaris, N. C. & Manias, S. N. Designing a new generalized battery management system. IEEE Trans. Ind. Electron. 50, 990–999 (2003).