Thursday, July 3, 2025
No menu items!
HomeNatureWhole-genome ancestry of an Old Kingdom Egyptian

Whole-genome ancestry of an Old Kingdom Egyptian

  • Garstang, J. in The Burial Customs of Ancient Egypt (ed. Garstang, J.) 26–30 (Archibald Constable, 1907).

  • Lazaridis, I. et al. Ancient DNA from Mesopotamia suggests distinct pre-pottery and pottery Neolithic migrations into Anatolia. Science 377, 982–987 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175.e28 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haber, M. et al. Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences. Am. J. Hum. Genet. 101, 274–282 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agranat-Tamir, L. et al. The genomic history of the Bronze Age Southern Levant. Cell 181, 1146–1157.e11 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvatori, S. & Usai, D. The neolithic and ‘pastoralism’ along the Nile: a dissenting view. J. World Prehist. 32, 251–285 (2019).

    Article 

    Google Scholar
     

  • Wengrow, D. The Archaeology of Early Egypt: Social Transformations in North-East Africa, 10,000 to 2,650 BC (Cambridge Univ. Press, 2006).


    Google Scholar
     

  • Bard, K. A. in The Oxford History of Ancient Egypt (ed. Shaw, I.) 61–88 (Oxford Univ. Press, 2000).


    Google Scholar
     

  • Stevenson, A. in The Sumerian World (ed. Crawford, H.) 620–636 (Routledge, 2013).


    Google Scholar
     

  • Malek, J. in The Oxford History of Ancient Egypt (ed. Shaw, I.) 89–117 (Oxford Univ. Press, 2000).


    Google Scholar
     

  • Doherty, S. K. The Origins and Use of the Potter’s Wheel in Ancient Egypt (Archaeopress, 2015).

    Book 

    Google Scholar
     

  • Keita, S. O. Y. Further studies of crania from ancient northern Africa: an analysis of crania from First Dynasty Egyptian tombs. Am. J. Phys. Anthropol. 87, 245–254 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prowse, T. L. & Lovell, N. C. Concordance of cranial and dental morphological traits and evidence for endogamy in ancient Egypt. Am. J. Phys. Anthropol. 101, 237–246 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irish, J. D. Who were the ancient Egyptians? Dental affinities among Neolithic through postdynastic peoples. Am. J. Phys. Anthropol. 129, 529–543 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Zakrzewski, S. R. in Egyptian Bioarchaeology: Humans, Animals, and the Environment (eds Ikram, S. et al.) 157–167 (Sidestone, 2015).


    Google Scholar
     

  • Dicke-Toupin, C. R. Population Continuity or Replacement at Ancient Lachish? (Fairbanks, 2012).


    Google Scholar
     

  • Irish, J. D. Diachronic and synchronic dental trait affinities of late and post-Pleistocene peoples from North Africa. Homo 49, 138–155 (1998).


    Google Scholar
     

  • Maaranen, N., Zakrzewski, S. & Schutkowski, H. Who were the Hyksos? Curr. Anthropol. 63, 66–69 (2022).

    Article 

    Google Scholar
     

  • Pääbo, S. Molecular cloning of ancient Egyptian mummy DNA. Nature 314, 644–645 (1985).

    Article 
    PubMed 

    Google Scholar
     

  • Schuenemann, V. J. et al. Ancient Egyptian mummy genomes suggest an increase of sub-Saharan African ancestry in post-Roman periods. Nat. Commun. 8, 15694 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, I. The Oxford History of Ancient Egypt (Oxford Univ. Press, 2000).

    Book 

    Google Scholar
     

  • De Meyer, M. et al. in Under the Potter’s Tree: Studies on Ancient Egypt Presented to Janine Bourriau Vol. 204 (eds Aston, D. et al.) 679–702 (Peeters, 2011).


    Google Scholar
     

  • Power, R. K. & Tristant, Y. From refuse to rebirth: repositioning the pot burial in the Egyptian archaeological record. Antiquity 90, 1474–1488 (2016).

    Article 

    Google Scholar
     

  • Lasisi, T. & Shriver, M. D. Focus on African diversity confirms complexity of skin pigmentation genetics. Genome Biol. 19, 13 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buikstra, J. E. & Ubelaker, D. U. Standards for Data Collection from Human Skeletal Remains (Arkansas Archeological Survey, 1994).


    Google Scholar
     

  • Raxter, M. H. et al. Stature estimation in ancient Egyptians: a new technique based on anatomical reconstruction of stature. Am. J. Phys. Anthropol. 136, 147–155 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Işcan, M. Y., Loth, S. R. & Wright, R. K. Age estimation from the rib by phase analysis: white males. J. Forensic Sci. 29, 1094–1104 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Kennedy, K. A. R. in Reconstruction of Life from the Skeleton (eds Kennedy, K. A. R. & Işcan, M. Y.) 129–160 (Alan R. Liss, 1989).


    Google Scholar
     

  • Capasso, L., Kenney, K. A. R. & Wilczak, C. A. Atlas of Occupational Markers on Human Remains (Edigratifal, 1998).


    Google Scholar
     

  • Buzon, M. R. & Simonetti, A. Strontium isotope (87Sr/86Sr) variability in the Nile Valley: identifying residential mobility during ancient Egyptian and Nubian sociopolitical changes in the New Kingdom and Napatan periods. Am. J. Phys. Anthropol. 151, 1–9 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Stantis, C., Nowell, G. M., Prell, S. & Schutkowski, H. Animal proxies to characterize the strontium biosphere in the northeastern Nile Delta. Bioarchaeology of the Near East 13, 1–13 (2019).


    Google Scholar
     

  • Touzeau, A. et al. Egyptian mummies record increasing aridity in the Nile Valley from 5500 to 1500 yr before present. Earth Planet. Sci. Lett. 375, 92–100 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Richards, M. P. in Archaeological Science: An Introduction (eds Richards, M. P. & Britton, K.) 125–144 (Cambridge Univ. Press, 2019).

  • Touzeau, A. et al. Diet of ancient Egyptians inferred from stable isotope systematics. J. Archaeol. Sci. 46, 114–124 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Macko, S. A. et al. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos. Trans. R. Soc. London, B: Biol. Sci. 354, 65–76 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, A. H., Richards, M. P., Shortland, A. & Zakrzewski, S. R. Isotopic palaeodiet studies of ancient Egyptian fauna and humans. J. Archaeol. Sci. 32, 451–463 (2005).

    Article 

    Google Scholar
     

  • Thompson, A. H., Chaix, L. & Richards, M. P. Stable isotopes and diet at ancient Kerma, Upper Nubia (Sudan). J. Archaeol. Sci. 35, 376–387 (2008).

    Article 

    Google Scholar
     

  • Poulallion, E. et al. High δ15N values in Predynastic Egyptian archeological remains: a potential indicator for localised soil fertilisation practices in extreme conditions. Preprint at bioRxiv https://doi.org/10.1101/2024.11.18.624066 (2024).

  • Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maier, R. et al. On the limits of fitting complex models of population history to f-statistics. eLife 12, e85492 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59–71.e21 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yüncü, E. et al. False discovery rates of qpAdm-based screens for genetic admixture. Preprint at bioRxiv https://doi.org/10.1101/2023.04.25.538339 (2023).

  • Simões, L. G. et al. Northwest African Neolithic initiated by migrants from Iberia and Levant. Nature 618, 550–556 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman, M. et al. Ancient DNA sheds light on the genetic origins of early Iron Age Philistines. Sci. Adv. 5, eaax0061 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zvelebil, M. & Lillie, M. in Europe’s First Farmers (ed Price, T. D.) 57–92 (Cambridge Univ. Press, 2000).

  • Pinhasi, R. & Stock, J. T. Human Bioarchaeology of the Transition to Agriculture (Wiley, 2011).

    Book 

    Google Scholar
     

  • Martin, N. et al. From hunter-gatherers to food producers: new dental insights into the Nile Valley population history (Late Paleolithic-Neolithic). Am. J. Biol. Anthropol. 184, e24948 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Stevenson, A. The Egyptian Predynastic and state formation. J. Archaeol. Res. 24, 421–468 (2016).

    Article 

    Google Scholar
     

  • Redford, D. B. Egypt, Canaan, and Israel in Ancient Times (Princeton Univ. Press, 1992).

  • Llorente, M. G. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Sci. Adv. 6, eaaz0183 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourriau, J. in The Oxford History of Ancient Egypt (ed. Shaw, I.) 172–206 (Oxford Univ. Press, 2000).


    Google Scholar
     

  • Ryholt, K. S. B. & Bülow-Jacobsen, A. The Political Situation in Egypt During the Second Intermediate Period, C. 1800-1550 B.C. (Museum Tusculanum, 1997).


    Google Scholar
     

  • Weiss, B. The decline of Late Bronze Age civilization as a possible response to climatic change. Clim. Change 4, 173–198 (1982).

    Article 

    Google Scholar
     

  • Ward, W. A., Joukowsky, M. S. & Åström, P. The Crisis Years: The 12th Century B.C.: From Beyond the Danube to the Tigris (Kendall Hunt, 1992).


    Google Scholar
     

  • Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salter-Townshend, M. & Myers, S. Fine-scale inference of ancestry segments without prior knowledge of admixing groups. Genetics 212, 869–889 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmonem, M. A. et al. The Egypt Genome Project. Nat. Genet. 56, 1035–1037 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dee, M. C14 data pottery coffin burial excavated by Garstang in Nuwayrat (World Museum, Liverpool, UK, 2016).

  • Vanthuyne, B. Early Old Kingdom Rock Circle Cemeteries in the 15th and 16th Nomes of Upper Egypt. A Socio-archaeological Investigation of the Cemeteries in Dayr al-Barshā, Dayr Abū Ḥinnis, Benī Ḥasan al-Shurūq and Nuwayrāt. PhD thesis, KU Leuven (2017).

  • Bronk Ramsey, C. Oxcal v.4.4.4 calibration program (2021); https://c14.arch.ox.ac.uk/oxcal.html.

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Bayliss, A. & Marshall, P. Radiocarbon Dating and Chronological Modelling: Guidelines and Best Practice (Historical Association, 2022).


    Google Scholar
     

  • Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scorrer, J. et al. Diversity aboard a Tudor warship: investigating the origins of the Mary Rose crew using multi-isotope analysis. R. Soc. Open Sci. 8, 202106 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coplen, T. B. Normalization of oxygen and hydrogen isotope data. Chem. Geol. 72, 293–297 (1988).

    CAS 

    Google Scholar
     

  • Chenery, C. A., Pashley, V., Lamb, A. L., Sloane, H. J. & Evans, J. A. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun. Mass Spectrom. 26, 309–319 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Font, L., Nowell, G. M., Graham Pearson, D., Ottley, C. J. & Willis, S. G. Sr isotope analysis of bird feathers by TIMS: a tool to trace bird migration paths and breeding sites. J. Anal. At. Spectrom. 22, 513 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Nier, A. O. The isotopic constitution of strontium, barium, bismuth, thallium and mercury. Phys. Rev. 54, 275–278 (1938).

    Article 
    CAS 

    Google Scholar
     

  • Avanzinelli, R., Conticelli, S. & Francalanci, L. High precision Sr, Nd, and Pb isotopic analyses using the new generation Thermal Ionisation Mass Spectrometer ThermoFinnigan Triton-Ti®. Periodico di Mineralogia 74, 147–166 (2015).


    Google Scholar
     

  • Işcan, M. Y., Loth, S. R. & Wright, R. K. Age estimation from the rib by phase analysis: white females. J. Forensic Sci. 30, 853–863 (1985).

    Article 
    PubMed 

    Google Scholar
     

  • Işcan, M. Y. & Loth, S. R. Determination of age from the sternal rib in white males: a test of the phase method. J. Forensic Sci. 31, 122–132 (1986).

    Article 
    PubMed 

    Google Scholar
     

  • Meindl, R. S. & Lovejoy, C. O. Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am. J. Phys. Anthropol. 68, 57–66 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R. & Mensforth, R. P. Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 68, 15–28 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brooks, S. & Suchey, J. M. Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum. Evol. 5, 227–238 (1990).

    Article 

    Google Scholar
     

  • Trotter, M. & Gleser, G. C. Estimation of stature from long bones of American whites and Negroes. Am. J. Phys. Anthropol. 10, 463–514 (1952).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robins, G. & Shute, C. C. D. Predynastic Egyptian stature and physical proportions. Hum. Evol. 1, 313–324 (1986).

    Article 

    Google Scholar
     

  • Bass, W. M. Human Osteology: A Laboratory and Field Manual (Missouri Archaeological Society, 2006).


    Google Scholar
     

  • Richard Scott, G. & Irish, J. D. Human Tooth Crown and Root Morphology (Cambridge Univ. Press, 2017).

    Book 

    Google Scholar
     

  • Howells, W. W. Skull Shapes and the Map: Craniometric Analyses in the Dispersion of Modern Homo, Vol. 79 (Harvard Univ. Press, 1989) .

  • Scott, G. R. et al. rASUDAS: a new web-based application for estimating ancestry from tooth morphology. Forensic Anthropol. 1, 18–31 (2018).

    Article 

    Google Scholar
     

  • Wright, R. Guide to Using the CRANID Programs Cr6bInd: For Linear and Nearest Neighbours Discriminant Analysis (2012); http://www.scribd.com/document/324417767/CRANID6b-ManuaL-1-pdf

  • Ortner, D. J. & Putschar, W. Identification of Paleopathological Conditions in Human Skeletal Remains (Smithsonian Institution, 1985).


    Google Scholar
     

  • Aufderheide, A. C. & Rodríguez-Martín, C. The Cambridge Encyclopedia of Human Paleopathology (Cambridge Univ. Press, 1998).


    Google Scholar
     

  • Hawkey, D. E. & Merbs, C. F. Activity‐induced musculoskeletal stress markers (MSM) and subsistence strategy changes among ancient Hudson Bay Eskimos. Int. J. Osteoarchaeol. 5, 324–338 (1995).

    Article 

    Google Scholar
     

  • Alves-Cardoso, F. & Assis, S. Exploring ‘wear and tear’ of joints and ‘muscle function’ assumptions in skeletons with known occupation at death. Am. J. Phys. Anthropol. 175, 689–700 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wallace, I. J. et al. Experimental evidence that physical activity inhibits osteoarthritis: implications for inferring activity patterns from osteoarthritis in archeological human skeletons. Am. J. Biol. Anthropol. 177, 223–231 (2022).

    Article 

    Google Scholar
     

  • Wilkinson, C. M. & Mahoney, G. in Craniofacial Identification (eds Wilkinson, C. M. & Rynn, C.) 222–237 (Cambridge Univ. Press, 2012).

    Book 

    Google Scholar
     

  • El-Mehallawi, I. H. & Soliman, E. M. Ultrasonic assessment of facial soft tissue thicknesses in adult Egyptians. Forensic Sci. Int. 117, 99–107 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilkinson, C. M. Facial reconstruction—anatomical art or artistic anatomy? J. Anat. 216, 235–250 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rynn, C., Balueva, T. & Veselovskaya, E. in Craniofacial Identification (eds Wilkinson, C. M. & Rynn, C.) 193–202 (Cambridge Univ. Press, 2012).


    Google Scholar
     

  • Wilkinson, C. M. Cognitive bias and facial depiction from skeletal remains. Bioarchaeology Int. 4, 1–14 (2021).

    Article 

    Google Scholar
     

  • Swali, P. et al. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat. Commun. 14, 2930 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fellows Yates, J. A. et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ 9, e10947 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 15, 356 (2014).

    Article 

    Google Scholar
     

  • Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiffels, S. SequenceTool. https://github.com/stschiff/sequenceTools (2022).

  • Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87–e87 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Schönherr, S., Weissensteiner, H., Kronenberg, F. & Forer, L. Haplogrep3—an interactive haplogroup classification and analysis platform. Nucleic Acids Res. 51, W263–W268 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into reference phylogenies. Mol. Biol. Evol. 39, msac017 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altınışık, N. E. et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic Transition. Sci. Adv. 8, eabo3609 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clemente, F. et al. The genomic history of the Aegean palatial civilizations. Cell 184, 2565–2586.e21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl Acad. Sci. USA 115, 6774–6779 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gokhman, D. et al. Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nat. Commun. 11, 1189 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haber, M. et al. A transient pulse of genetic admixture from the crusaders in the near east identified from ancient genome sequences. Am. J. Hum. Genet. 104, 977–984 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haber, M. et al. A genetic history of the near east from an aDNA time course sampling eight points in the past 4,000 years. Am. J. Hum. Genet. 107, 149–157 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592, 253–257 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kılınç, G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. A genetic probe into the ancient and medieval history of Southern Europe and West Asia. Science 377, 940–951 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipson, M. et al. Ancient West African foragers in the context of African population history. Nature 577, 665–670 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipson, M. et al. Ancient DNA and deep population structure in sub-Saharan African foragers. Nature 603, 290–296 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McColl, H. et al. The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Omrak, A. et al. Genomic evidence establishes Anatolia as the source of the European Neolithic gene pool. Curr. Biol. 26, 270–275 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of native Americans. Nature 505, 87–91 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Rodríguez-Varela, R. et al. Genomic analyses of pre-European conquest human remains from the Canary Islands reveal close affinity to modern North Africans. Curr. Biol. 28, 1677–1679 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Schlebusch, C. M. et al. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358, 652–655 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sirak, K. A. et al. Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia. Nat. Commun. 12, 7283 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Loosdrecht, M. et al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. 31, 2455–2468.e18 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 27, 3202–3208.e9 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 1–13 (2019).


    Google Scholar
     

  • Wang, C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans.Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flegontov, P. et al. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagani, L. et al. Tracing the route of modern humans out of Africa by using 225 human genome sequences from Ethiopians and Egyptians. Am. J. Hum. Genet. 96, 986–991 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickrell, J. K. et al. The genetic prehistory of southern Africa. Nat. Commun. 3, 1143 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Nature 538, 510–513 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vyas, D. N., Al-Meeri, A. & Mulligan, C. J. Testing support for the northern and southern dispersal routes out of Africa: an analysis of Levantine and southern Arabian populations. Am. J. Phys. Anthropol. 164, 736–749 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Biagini, S. A. et al. People from Ibiza: an unexpected isolate in the Western Mediterranean. Eur. J. Hum. Genet. 27, 941–951 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, N., Moorjani, P., Luo, Y., Mallick, S. & Rohland, N. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci. Data 11, 1–10 (2024).

    Article 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa da Mota, B. et al. Imputation of ancient human genomes. Nat. Commun. 14, 3660 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 

    Google Scholar
     

  • Chaitanya, L. et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci. Int. Genet. 35, 123–135 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, S. et al. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci. Int. Genet. 9, 150–161 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, S. et al. Global skin colour prediction from DNA. Hum. Genet. 136, 847–863 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments