Sunday, March 23, 2025
No menu items!
HomeNatureWater structure and electric fields at the interface of oil droplets

Water structure and electric fields at the interface of oil droplets

  • Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Strazdaite, S., Versluis, J., Backus, E. H. G. & Bakker, H. J. Enhanced ordering of water at hydrophobic surfaces. J. Chem. Phys. 140, 054711 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Stabilization of hydroxide ions at the interface of a hydrophobic monolayer on water via reduced proton transfer. Phys. Rev. Lett. 125, 156803 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, H., Lee, J. K., Zare, R. N. & Min, W. Strong electric field observed at the interface of aqueous microdroplets. J. Phys. Chem. Lett. 11, 7423–7428 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pullanchery, S., Kulik, S., Rehl, B., Hassanali, A. & Roke, S. Charge transfer across C–HO hydrogen bonds stabilizes oil droplets in water. Science 374, 1366–1370 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben-Amotz, D. Hydration-shell vibrational spectroscopy. J. Am. Chem. Soc. 141, 10569–10580 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LaCour, R. A., Heindel, J. P. & Head-Gordon, T. Predicting the Raman spectra of liquid water with a monomer-field model. J. Phys. Chem. Lett. 14, 11742–11749 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Roger, K. & Cabane, B. Why are hydrophobic/water interfaces negatively charged? Angew. Chem. Int. Edn 51, 5625–5628 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. K., Banerjee, S., Nam, H. G. & Zare, R. N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48, 437–444 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wei, Z., Li, Y., Cooks, R. G. & Yan, X. Accelerated reaction kinetics in microdroplets: overview and recent developments. Annu. Rev. Phys. Chem. 71, 31–51 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jin, S. et al. The spontaneous electron-mediated redox processes on sprayed water microdroplets. J. Am. Chem. Soc. Au 3, 1563–1571 (2023).

    CAS 
    MATH 

    Google Scholar
     

  • LaCour, R. A., Heindel, J. P., Zhao, R. & Head-Gordon, T. The role of interfaces and charge for chemical reactivity in microdroplets. J. Am. Chem. Soc. 147, 6299–6317 (2025).

  • Stachurski, J. & MichaŁek, M. The effect of the ζ potential on the stability of a non-polar oil-in-water emulsion. J. Colloid Interface Sci. 184, 433–436 (1996).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Beattie, J. K. & Djerdjev, A. M. The pristine oil/water interface: surfactant-free hydroxide-charged emulsions. Angew. Chem. Int. Edn 43, 3568–3571 (2004).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Du, Q., Freysz, E. & Shen, Y. R. Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264, 826–828 (1994).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gragson, D. E. & Richmond, G. L. Comparisons of the structure of water at neat oil/water and air/water interfaces as determined by vibrational sum frequency generation. Langmuir 13, 4804–4806 (1997).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Brown, M. G., Walker, D. S., Raymond, E. A. & Richmond, G. L. Vibrational sum-frequency spectroscopy of alkane/water interfaces: experiment and theoretical simulation. J. Phys. Chem. B 107, 237–244 (2003).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gonella, G., Lütgebaucks, C., de Beer, A. G. F. & Roke, S. Second harmonic and sum-frequency generation from aqueous interfaces is modulated by interference. J. Phys. Chem. C 120, 9165–9173 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ohno, P. E., Saslow, S. A., Wang, H.-f., Geiger, F. M. & Eisenthal, K. B. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface. Nat. Commun. 7, 13587 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpenter, A. P., Tran, E., Altman, R. M. & Richmond, G. L. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge. Proc. Natl Acad. Sci. USA 116, 9214–9219 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pullanchery, S., Kulik, S., Okur, H. I., de Aguiar, H. B. & Roke, S. On the stability and necessary electrophoretic mobility of bare oil nanodroplets in water. J. Chem. Phys. 152, 241104 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roke, S. & Gonella, G. Nonlinear light scattering and spectroscopy of particles and droplets in liquids. Annu. Rev. Phys. Chem. 63, 353–378 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kulik, S., Pullanchery, S. & Roke, S. Vibrational sum frequency scattering in absorptive media: a theoretical case study of nano-objects in water. J. Phys. Chem. C 124, 23078–23085 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Carpenter, A. P., Christoffersen, E. L., Mapile, A. N. & Richmond, G. L. Assessing the impact of solvent selection on vibrational sum-frequency scattering spectroscopy experiments. J. Phys. Chem. B 125, 3216–3229 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X., Lu, W., Streacker, L. M., Ashbaugh, H. S. & Ben-Amotz, D. Methane hydration-shell structure and fragility. Angew. Chem. Int. Edn 57, 15133–15137 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hao, H., Leven, I. & Head-Gordon, T. Can electric fields drive chemistry for an aqueous microdroplet? Nat. Commun. 13, 280 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Spoorthi, B. K. et al. Spontaneous weathering of natural minerals in charged water microdroplets forms nanomaterials. Science 384, 1012–1017 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jia, X., Wu, J. & Wang, F. Water-microdroplet-driven interface-charged chemistries. J. Am. Chem. Soc. Au. 4, 4141–4147 (2024).

    CAS 

    Google Scholar
     

  • Perera, P. N. et al. Observation of water dangling OH bonds around dissolved nonpolar groups. Proc. Natl Acad. Sci. USA 106, 12230–12234 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Willard, A. P. & Chandler, D. Instantaneous liquid interfaces. J. Phys. Chem. B 114, 1954–1958 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ren, P. & Ponder, J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107, 5933–5947 (2003).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Smith, J. D., Saykally, R. J. & Geissler, P. L. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129, 13847–13856 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fried, S. D. & Boxer, S. G. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc. Chem. Res. 48, 998–1006 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chandler, D. Hydrophobicity: two faces of water. Nature 417, 491–491 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nauruzbayeva, J. et al. Electrification at water–hydrophobe interfaces. Nat. Commun. 11, 5285 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kim, J., Lee, J. Y., Lee, S., Mhin, B. J. & Kim, K. S. Harmonic vibrational frequencies of the water monomer and dimer: comparison of various levels of ab initio theory. J. Chem. Phys. 102, 310–317 (1995).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Beattie, J. K., Djerdjev, A. M. & Warr, G. G. The surface of neat water is basic. Faraday Discuss. 141, 31–39 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Preočanin, T. et al. Surface charge at Teflon/aqueous solution of potassium chloride interfaces. Colloids Surf. A 412, 120–128 (2012).

    Article 

    Google Scholar
     

  • Vogel, Y. B. et al. The corona of a surface bubble promotes electrochemical reactions. Nat. Commun. 11, 6323 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Siu, S. W. I., Pluhackova, K. & Böckmann, R. A. Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8, 1459–1470 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fried, S. D., Wang, L.-P., Boxer, S. G., Ren, P. & Pande, V. S. Calculations of the electric fields in liquid solutions. J. Phys. Chem. B 117, 16236–16248 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hande, V. R. & Chakrabarty, S. Structural order of water molecules around hydrophobic solutes: length-scale dependence and solute–solvent coupling. J. Phys. Chem. B 119, 11346–11357 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carpenter, A. P., Altman, R. M., Tran, E. & Richmond, G. L. How low can you go? Molecular details of low-charge nanoemulsion surfaces. J. Phys. Chem. B 124, 4234–4245 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jena, K. C., Scheu, R. & Roke, S. Surface impurities are not responsible for the charge on the oil/water interface: a comment. Angew. Chem. Int. Edn 51, 12938–12940 (2012).

    Article 
    CAS 

    Google Scholar
     

  • alacour. alacour/water_oil_interface: analysis scripts for Raman of water-oil interface (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.14618735 (2025).

  • de Oliveira, D. M. Water-Mediated Interactions Through the Lens of Raman Multivariate Curve Resolution. PhD thesis, Purdue Univ. (2021).

  • RELATED ARTICLES

    Most Popular

    Recent Comments