Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).
Strazdaite, S., Versluis, J., Backus, E. H. G. & Bakker, H. J. Enhanced ordering of water at hydrophobic surfaces. J. Chem. Phys. 140, 054711 (2014).
Yang, S. et al. Stabilization of hydroxide ions at the interface of a hydrophobic monolayer on water via reduced proton transfer. Phys. Rev. Lett. 125, 156803 (2020).
Xiong, H., Lee, J. K., Zare, R. N. & Min, W. Strong electric field observed at the interface of aqueous microdroplets. J. Phys. Chem. Lett. 11, 7423–7428 (2020).
Pullanchery, S., Kulik, S., Rehl, B., Hassanali, A. & Roke, S. Charge transfer across C–H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. Science 374, 1366–1370 (2021).
Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012).
Ben-Amotz, D. Hydration-shell vibrational spectroscopy. J. Am. Chem. Soc. 141, 10569–10580 (2019).
LaCour, R. A., Heindel, J. P. & Head-Gordon, T. Predicting the Raman spectra of liquid water with a monomer-field model. J. Phys. Chem. Lett. 14, 11742–11749 (2023).
Roger, K. & Cabane, B. Why are hydrophobic/water interfaces negatively charged? Angew. Chem. Int. Edn 51, 5625–5628 (2012).
Lee, J. K., Banerjee, S., Nam, H. G. & Zare, R. N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48, 437–444 (2015).
Wei, Z., Li, Y., Cooks, R. G. & Yan, X. Accelerated reaction kinetics in microdroplets: overview and recent developments. Annu. Rev. Phys. Chem. 71, 31–51 (2020).
Jin, S. et al. The spontaneous electron-mediated redox processes on sprayed water microdroplets. J. Am. Chem. Soc. Au 3, 1563–1571 (2023).
LaCour, R. A., Heindel, J. P., Zhao, R. & Head-Gordon, T. The role of interfaces and charge for chemical reactivity in microdroplets. J. Am. Chem. Soc. 147, 6299–6317 (2025).
Stachurski, J. & MichaŁek, M. The effect of the ζ potential on the stability of a non-polar oil-in-water emulsion. J. Colloid Interface Sci. 184, 433–436 (1996).
Beattie, J. K. & Djerdjev, A. M. The pristine oil/water interface: surfactant-free hydroxide-charged emulsions. Angew. Chem. Int. Edn 43, 3568–3571 (2004).
Du, Q., Freysz, E. & Shen, Y. R. Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264, 826–828 (1994).
Gragson, D. E. & Richmond, G. L. Comparisons of the structure of water at neat oil/water and air/water interfaces as determined by vibrational sum frequency generation. Langmuir 13, 4804–4806 (1997).
Brown, M. G., Walker, D. S., Raymond, E. A. & Richmond, G. L. Vibrational sum-frequency spectroscopy of alkane/water interfaces: experiment and theoretical simulation. J. Phys. Chem. B 107, 237–244 (2003).
Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).
Gonella, G., Lütgebaucks, C., de Beer, A. G. F. & Roke, S. Second harmonic and sum-frequency generation from aqueous interfaces is modulated by interference. J. Phys. Chem. C 120, 9165–9173 (2016).
Ohno, P. E., Saslow, S. A., Wang, H.-f., Geiger, F. M. & Eisenthal, K. B. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface. Nat. Commun. 7, 13587 (2016).
Carpenter, A. P., Tran, E., Altman, R. M. & Richmond, G. L. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge. Proc. Natl Acad. Sci. USA 116, 9214–9219 (2019).
Pullanchery, S., Kulik, S., Okur, H. I., de Aguiar, H. B. & Roke, S. On the stability and necessary electrophoretic mobility of bare oil nanodroplets in water. J. Chem. Phys. 152, 241104 (2020).
Roke, S. & Gonella, G. Nonlinear light scattering and spectroscopy of particles and droplets in liquids. Annu. Rev. Phys. Chem. 63, 353–378 (2012).
Kulik, S., Pullanchery, S. & Roke, S. Vibrational sum frequency scattering in absorptive media: a theoretical case study of nano-objects in water. J. Phys. Chem. C 124, 23078–23085 (2020).
Carpenter, A. P., Christoffersen, E. L., Mapile, A. N. & Richmond, G. L. Assessing the impact of solvent selection on vibrational sum-frequency scattering spectroscopy experiments. J. Phys. Chem. B 125, 3216–3229 (2021).
Wu, X., Lu, W., Streacker, L. M., Ashbaugh, H. S. & Ben-Amotz, D. Methane hydration-shell structure and fragility. Angew. Chem. Int. Edn 57, 15133–15137 (2018).
Hao, H., Leven, I. & Head-Gordon, T. Can electric fields drive chemistry for an aqueous microdroplet? Nat. Commun. 13, 280 (2022).
Spoorthi, B. K. et al. Spontaneous weathering of natural minerals in charged water microdroplets forms nanomaterials. Science 384, 1012–1017 (2024).
Jia, X., Wu, J. & Wang, F. Water-microdroplet-driven interface-charged chemistries. J. Am. Chem. Soc. Au. 4, 4141–4147 (2024).
Perera, P. N. et al. Observation of water dangling OH bonds around dissolved nonpolar groups. Proc. Natl Acad. Sci. USA 106, 12230–12234 (2009).
Willard, A. P. & Chandler, D. Instantaneous liquid interfaces. J. Phys. Chem. B 114, 1954–1958 (2010).
Ren, P. & Ponder, J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107, 5933–5947 (2003).
Smith, J. D., Saykally, R. J. & Geissler, P. L. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129, 13847–13856 (2007).
Fried, S. D. & Boxer, S. G. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc. Chem. Res. 48, 998–1006 (2015).
Chandler, D. Hydrophobicity: two faces of water. Nature 417, 491–491 (2002).
Nauruzbayeva, J. et al. Electrification at water–hydrophobe interfaces. Nat. Commun. 11, 5285 (2020).
Kim, J., Lee, J. Y., Lee, S., Mhin, B. J. & Kim, K. S. Harmonic vibrational frequencies of the water monomer and dimer: comparison of various levels of ab initio theory. J. Chem. Phys. 102, 310–317 (1995).
Beattie, J. K., Djerdjev, A. M. & Warr, G. G. The surface of neat water is basic. Faraday Discuss. 141, 31–39 (2009).
Preočanin, T. et al. Surface charge at Teflon/aqueous solution of potassium chloride interfaces. Colloids Surf. A 412, 120–128 (2012).
Vogel, Y. B. et al. The corona of a surface bubble promotes electrochemical reactions. Nat. Commun. 11, 6323 (2020).
Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).
Siu, S. W. I., Pluhackova, K. & Böckmann, R. A. Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8, 1459–1470 (2012).
Fried, S. D., Wang, L.-P., Boxer, S. G., Ren, P. & Pande, V. S. Calculations of the electric fields in liquid solutions. J. Phys. Chem. B 117, 16236–16248 (2013).
Hande, V. R. & Chakrabarty, S. Structural order of water molecules around hydrophobic solutes: length-scale dependence and solute–solvent coupling. J. Phys. Chem. B 119, 11346–11357 (2015).
Carpenter, A. P., Altman, R. M., Tran, E. & Richmond, G. L. How low can you go? Molecular details of low-charge nanoemulsion surfaces. J. Phys. Chem. B 124, 4234–4245 (2020).
Jena, K. C., Scheu, R. & Roke, S. Surface impurities are not responsible for the charge on the oil/water interface: a comment. Angew. Chem. Int. Edn 51, 12938–12940 (2012).
alacour. alacour/water_oil_interface: analysis scripts for Raman of water-oil interface (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.14618735 (2025).
de Oliveira, D. M. Water-Mediated Interactions Through the Lens of Raman Multivariate Curve Resolution. PhD thesis, Purdue Univ. (2021).