Thursday, June 19, 2025
No menu items!
HomeNatureWater ice in the debris disk around HD 181327

Water ice in the debris disk around HD 181327

  • Hughes, A. M., Duchêne, G. & Matthews, B. C. Debris disks: structure, composition, and variability. Annu. Rev. Astron. Astrophys. 56, 541–591 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eistrup, C. & Henning, T. Chemical evolution in ices on drifting, planet-forming pebbles. Astron. Astrophys. 667, A160 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krijt, S. et al. in Protostars and Planets VII, vol. 534 (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) 1031–1073 (2023).

  • Gudipati, M. S. & Castillo-Rogez, J. (eds) The Science of Solar System Ices (Springer, 2013).

  • Jakobsen, P. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. Astron. Astrophys. 661, A80 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Böker, T. et al. In-orbit performance of the near-infrared spectrograph NIRSpec on the James Webb Space Telescope. Publ. Astron. Soc. Pac. 135, 038001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Torres, C. Ã. Õ. et al. Search for associations containing young stars (SACY). I. Sample and searching method. Astron. Astrophys. 460, 695–708 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. Astron. J. 161, 147 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Miret-Roig, N. et al. Dynamical traceback age of the β Pictoris moving group. Astron. Astrophys. 642, A179 (2020).

    Article 

    Google Scholar
     

  • Schneider, G. et al. Discovery of an 86 au radius debris ring around HD 181327. Astrophys. J. 650, 414–431 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Chen, C. H., Fitzgerald, M. P. & Smith, P. S. A possible icy Kuiper belt around HD 181327. Astrophys. J. 689, 539–544 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marino, S. et al. Exocometary gas in the HD 181327 debris ring. Mon. Not. R. Astron. Soc. 460, 2933–2944 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kral, Q., Matrà, L., Wyatt, M. C. & Kennedy, G. M. Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. Mon. Not. R. Astron. Soc. 469, 521–550 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hedman, M. M. et al. Water‐ice dominated spectra of Saturn’s rings and small moons from JWST. J. Geophys. Res.: Planets 129, e2023JE008236 (2024).

  • Markwardt, L. et al. First near-IR spectroscopic survey of Neptune trojans with JWST: distinct surface compositions of red vs ultra-red Neptune trojans. Preprint at arxiv.org/abs/2310.03998 (2023).

  • Wong, I. et al. JWST near-infrared spectroscopy of the Lucy Jupiter trojan flyby targets: evidence for OH absorption, aliphatic organics, and CO2. Planet. Sci. J. 5, 87 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pinilla-Alonso, N. et al. A DiSCo JWST portrait of the primordial Solar System through its trans-Neptunian objects. Nat. Astron. 9, 230–244 (2025).

    Article 

    Google Scholar
     

  • Mastrapa, R. M. E., Grundy, W. M. & Gudipati, M. S. in The Science of Solar System Ices, vol. 356 (eds Gudipati, M. & Castillo-Rogez, J.) 371–408 (Springer, 2013).

  • Stephan, K. et al. VIS-NIR/SWIR spectral properties of H2O ice depending on particle size and surface temperature. Minerals 11, 1328 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lebreton, J. et al. An icy Kuiper belt around the young solar-type star HD 181327. Astron. Astrophys. 539, A17 (2012).

    Article 

    Google Scholar
     

  • Lisse, C. M. et al. Infrared spectroscopy of HR 4796A’s bright outer cometary ring + tenuous inner hot dust cloud. Astron. J. 154, 182 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fray, N. & Schmitt, B. Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57, 2053–2080 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lisse, C. M. et al. On the origin & thermal stability of Arrokoth’s and Pluto’s ices. Icarus 356, 114072 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Milli, J. et al. The polarisation properties of the HD 181327 debris ring. Astron. Astrophys. 683, A22 (2024).

    Article 

    Google Scholar
     

  • Dobricǎ, E. et al. Connection between micrometeorites and Wild 2 particles: from Antarctic snow to cometary ices. Meteorit. Planet. Sci. 44, 1643–1661 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lisse, C. M. et al. Spitzer spectral observations of the deep impact ejecta. Science 313, 635–640 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Milli, J. et al. in SF2A-2023: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (eds N’Diaye, M. et al.) 275–278 (2023).

  • Olofsson, J. et al. Transient dust in warm debris disks. Astron. Astrophys. 542, A90 (2012).

    Article 

    Google Scholar
     

  • Lisse, C. M., Kraemer, K. E., Nuth, J. A., Li, A. & Joswiak, D. Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale–Bopp 1995 O1 and YSO HD 100546. Icarus 191, 223–240 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Brown, M. E., Barkume, K. M., Ragozzine, D. & Schaller, E. L. A collisional family of icy objects in the Kuiper belt. Nature 446, 294–296 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinilla-Alonso, N., Licandro, J., Gil-Hutton, R. & Brunetto, R. The water ice rich surface of (145453) 2005 RR: a case for a carbon-depleted population of TNOs? Astron. Astrophys. 468, L25–L28 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pinilla-Alonso, N. et al. The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-Neptunian belt. Astron. Astrophys. 496, 547–556 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stark, C. C. et al. Revealing asymmetries in the HD 181327 debris disk: a recent massive collision or interstellar medium warping. Astrophys. J. 789, 58 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kelley, M. S. P. et al. Spectroscopic identification of water emission from a main-belt comet. Nature 619, 720–723 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, M. E. & Fraser, W. C. The state of CO and CO2 ices in the Kuiper belt as seen by JWST. Planet. Sci. J. 4, 130 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Licandro, J. et al. Thermal evolution of trans-Neptunian objects through observations of centaurs with JWST. Nat. Astron. 9, 245–251 (2025).

    Article 

    Google Scholar
     

  • Nilsson, R. et al. Kuiper belts around nearby stars. Astron. Astrophys. 518, A40 (2010).

    Article 

    Google Scholar
     

  • Krivov, A. V. & Wyatt, M. C. Solution to the debris disc mass problem: planetesimals are born small? Mon. Not. R. Astron. Soc. 500, 718–735 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Quarles, B. & Kaib, N. Instabilities in the early Solar System due to a self-gravitating disk. Astron. J. 157, 67 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Prá, M. N. D. et al. Widespread CO2 and CO ices in the trans-Neptunian population revealed by JWST/DiSCo-TNOs. Nat. Astron. 9, 252–261 (2025).

  • Mannings, V. & Barlow, M. J. Candidate main-sequence stars with debris disks: a new sample of Vega-like sources. Astrophys. J. 497, 330–341 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Schneider, G. et al. Probing for exoplanets hiding in dusty debris disks: disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy. Astron. J. 148, 59 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Böker, T. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. Astron. Astrophys. 661, A82 (2022).

    Article 

    Google Scholar
     

  • Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2025).

  • Ren, B., Pueyo, L., Perrin, M. D., Debes, J. H. & Choquet, É. in Proc. SPIE Conference Series Techniques and Instrumentation for Detection of Exoplanets VIII, Vol. 10400 (ed. Shaklan, S.) 1040021 (SPIE, 2017).

  • Pueyo, L. et al. Reconnaissance of the HR 8799 exosolar system. II. Astrometry and orbital motion. Astrophys. J. 803, 31 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Smith, B. A. & Terrile, R. J. A circumstellar disk around β Pictoris. Science 226, 1421–1424 (1984).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lafrenière, D., Marois, C., Doyon, R. & Barman, T. HST/NICMOS detection of HR 8799 b in 1998. Astrophys. J. 694, L148–L152 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J 131, 1163–1183 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Pueyo, L. Detection and characterization of exoplanets using projections on Karhunen–Loeve eigenimages: forward modeling. Astrophys. J. 824, 117 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Follette, K. B. An introduction to high contrast differential imaging of exoplanets and disks. Publ. Astron. Soc. Pac. 135, 093001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ren, B. & Perrin, M. DebrisDiskFM, v1.0. Zenodo https://doi.org/10.5281/zenodo.2398963 (2018).

  • Augereau, J. C., Lagrange, A. M., Mouillet, D., Papaloizou, J. C. B. & Grorod, P. A. On the HR 4796 A circumstellar disk. Astron. Astrophys. 348, 557–569 (1999).

  • Thébault, P. Vertical structure of debris discs. Astron. Astrophys. 505, 1269–1276 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Henyey, L. G. & Greenstein, J. L. Diffuse radiation in the Galaxy. Astrophys. J. 93, 70–83 (1941).

    Article 
    ADS 

    Google Scholar
     

  • Millar-Blanchaer, M. A. et al. β Pictoris’ inner disk in polarized light and new orbital parameters for β Pictoris b. Astrophys. J. 811, 18 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Xie, C. et al. Reference-star differential imaging on SPHERE/IRDIS. Astron. Astrophys. 666, A32 (2022).

    Article 

    Google Scholar
     

  • Ren, B. et al. A layered debris disk around M star TWA 7 in scattered light. Astrophys. J. 914, 95 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hedman, M. M. & Stark, C. C. Saturn’s G and D rings provide nearly complete measured scattering phase functions of nearby debris disks. Astrophys. J. 811, 67 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Allard, F., Homeier, D. & Freytag, B. in 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, vol. 448 (eds Johns-Krull, C., Browning, M. & West, A.) 91 (2011).

  • Gaia Collaboration Gaia Data Release 3. Astron. Astrophys. 674, A1 (2023).

    Article 

    Google Scholar
     

  • Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908).

    Article 

    Google Scholar
     

  • Prahl, S. miepython: pure Python implementation of Mie scattering. Zenodo https://doi.org/10.5281/zenodo.8218010 (2023).

  • Bruggeman, D. Ã. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leit\(\ddot{{\rm{f}}}\) ahigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935).

    Article 

    Google Scholar
     

  • Mastrapa, R. M., Sandford, S. A., Roush, T. L., Cruikshank, D. P. & Ore, C. M. D. Optical constants of amorphous and crystalline H2O-ice: 2.5–22 μm (4000–455 cm−1) Optical constants of H2O-ice. Astrophys. J. 701, 1347–1356 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Henning, T. & Stognienko, R. Dust opacities for protoplanetary accretion disks: influence of dust aggregates. Astron. Astrophys. 311, 291–303 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Dorschner, J., Begemann, B., Henning, T., Jaeger, C. & Mutschke, H. Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astron. Astrophys. 300, 503 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Preibisch, Th., Ossenkopf, V., Yorke, H. W. & Henning, Th. The influence of ice-coated grains on protostellar spectra. Astron. Astrophys. 279, 577–588 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Laor, A. & Draine, B. T. Spectroscopic constraints on the properties of dust in active galactic nuclei. Astrophys. J. 402, 441 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augereau, J.-C. & Beust, H. On the AU Microscopii debris disk. Astron. Astrophys. 455, 987–999 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Quirico, E. et al. Refractory and semi-volatile organics at the surface of comet 67 P/Churyumov-Gerasimenko: insights from the VIRTIS/Rosetta imaging spectrometer. Icarus 272, 32–47 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grigorieva, A., Thébault, P. H., Artymowicz, P. & Brandeker, A. Survival of icy grains in debris discs. Astron. Astrophys. 475, 755–764 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prialnik, D. Crystallization, sublimation, and gas release in the interior of a porous comet nucleus. Astrophys. J. 388, 196 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, S. G. & Brandt, R. E. Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res. Atmos. 113, D14220 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Lebofsky, L. A. Stability of frosts in the Solar System. Icarus 25, 205–217 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gauchet, L. et al. Sparse aperture masking at the VLT. Astron. Astrophys. 595, A31 (2016).

    Article 

    Google Scholar
     

  • Westley, M. S., Baragiola, R. A., Johnson, R. E. & Baratta, G. A. Ultraviolet photodesorption from water ice. Planet. Space Sci. 43, 1311–1315 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andersson, S., Al-Halabi, A., Kroes, G.-J. & van Dishoeck, E. F. Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices. J. Chem. Phys. 124, 064715–064715 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, G. I. et al. Catalogue of Stellar Ultraviolet Fluxes: A Compilation of Absolute Stellar Fluxes Measured by the Sky Survey Telescope (S2/68) aboard the ESRO Satellite TD-1 (Science Research Council, 1978).

  • Backman, D. E. & Paresce, F. in Protostars and Planets III (eds Levy, E. H. and Lunine, J. I.) 1253–1304 (Univ. Arizona Press, 1993).

  • Chen, C. H. et al. Spitzer IRS spectroscopy of IRAS-discovered debris disks. Astrophys. J. Suppl. Ser. 166, 351 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stassun, K. G. et al. The TESS input catalog and candidate target list. Astron. J. 156, 102 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Burns, J. A., Lamy, P. L. & Soter, S. Radiation forces on small particles in the Solar System. Icarus 40, 1–48 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Arnold, J. A., Weinberger, A. J., Videen, G. & Zubko, E. S. The effect of dust composition and shape on radiation-pressure forces and blowout sizes of particles in debris disks. Astron. J. 157, 157 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thebault, P., Olofsson, J. & Kral, Q. A reinvestigation of debris disc halos. Astron. Astrophys. 674, A51 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Poppe, A. R. et al. Constraining the Solar System’s debris disk with in situ New Horizons measurements from the Edgeworth–Kuiper Belt. Astrophys. J. Lett. 881, L12 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doner, A. et al. New Horizons Venetia Burney student dust counter observes higher than expected fluxes approaching 60 au. Astrophys. J. Lett. 961, L38 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Horányi, M. et al. The student dust counter on the New Horizons mission. Space Sci. Rev. 140, 387–402 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Emery, J. P., Cruikshank, D. P. & Cleve, J. V. Thermal emission spectroscopy (5.2–38 μm) of three trojan asteroids with the Spitzer Space Telescope: detection of fine-grained silicates. Icarus 182, 496–512 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Martin, A. C., Emery, J. P. & Loeffler, M. J. Spectral effects of regolith porosity in the mid-IR – forsteritic olivine. Icarus 378, 114921 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Martin, A. C. & Emery, J. P. MIR spectra and analysis of Jovian trojan asteroids. Planet. Sci. J. 4, 153 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sturm, J. A. et al. A JWST inventory of protoplanetary disk ices: the edge-on protoplanetary disk HH 48 NE, seen with the Ice Age ERS program. Astron. Astrophys. 679, A138 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mcclintock, W. E., Rottman, G. J. & Woods, T. N. Solar–stellar irradiance comparison experiment II (Solstice II): instrument concept and design. Sol. Phys. 230, 225–258 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Xie, C. et al. Water ice in the debris disk around HD 181327: reduced data cube and extracted disk spectra. Zenodo https://doi.org/10.5281/zenodo.14985028 (2025).

  • Houk, N. Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars (Univ. Michigan Press, 1978).

  • RELATED ARTICLES

    Most Popular

    Recent Comments