Thursday, January 30, 2025
No menu items!
HomeNatureWarming and cooling catalyse widespread temporal turnover in biodiversity

Warming and cooling catalyse widespread temporal turnover in biodiversity

  • Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Global Assessment Report on Biodiversity and Ecosystem Services https://ipbes.net/global-assessment (IPBES, 2019).

  • Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewthwaite, J. M. M., Debinski, D. M. & Kerr, J. T. High community turnover and dispersal limitation relative to rapid climate change. Glob. Ecol. Biogeogr. 26, 459–471 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Sgardeli, V., Zografou, K. & Halley, J. M. Climate change versus ecological drift: assessing 13 years of turnover in a butterfly community. Basic Appl. Ecol. 17, 283–290 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368, 1341–1347 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nakadai, R. Degrees of compositional shift in tree communities vary along a gradient of temperature change rates over one decade: application of an individual‐based temporal beta‐diversity concept. Ecol. Evol. 10, 13613–13623 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindholm, M., Alahuhta, J., Heino, J. & Toivonen, H. Temporal beta diversity of lake plants is determined by concomitant changes in environmental factors across decades. J. Ecol. 109, 819–832 (2021).

    Article 

    Google Scholar
     

  • Angilletta Jr, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).

  • Sunday, J. M. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. 37, 672–682 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Collins, S. L., Micheli, F. & Hartt, L. A method to determine rates and patterns of variability in ecological communities. Oikos 91, 285–293 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Millar, R. B., Anderson, M. J. & Tolimieri, N. Much ado about nothings: using zero similarity points in distance–decay curves. Ecology 92, 1717–1722 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Muletz‐Wolz, C. R. et al. Diversity and temporal dynamics of primate milk microbiomes. Am. J. Primatol. 81, e22994 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonachela, J. A., Burrows, M. T. & Pinsky, M. L. Shape of species climate response curves affects community response to climate change. Ecol. Lett. 24, 708–718 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Khaliq, I. et al. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat. Commun. 15, 1921 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gallagher, R. V., Allen, S. & Wright, I. J. Safety margins and adaptive capacity of vegetation to climate change. Sci. Rep. 9, 8241 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Peng, S. et al. Towards an understanding of the latitudinal patterns in thermal tolerance and vulnerability of woody plants under climate warming. Ecography 44, 1797–1807 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beaugrand, G., Kirby, R. & Goberville, E. The mathematical influence on global patterns of biodiversity. Ecol. Evol. 10, 6494–6511 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Williams, J. J. & Newbold, T. Local climatic changes affect biodiversity responses to land use: a review. Divers. Distrib. 26, 76–92 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kortz, A. R. et al. Elevated compositional change in plant assemblages linked to invasion. Proc. R. Soc. B 290, 20222450 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641–1255641 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ontiveros, V. J., Capitán, J. A., Casamayor, E. O. & Alonso, D. The characteristic time of ecological communities. Ecology 102, e03247 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, L., Takahashi, D., Hartvig, M. & Andersen, K. H. Food-web dynamics under climate change. Proc. R. Soc. B 284, 20171772 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (Cambridge Univ. Press, 2021).

  • Svensson, S., Thorner, A. M. & Nyholm, N. E. I. Species trends, turnover and composition of a woodland bird community in southern Sweden during a period of fifty-seven years. Ornis Svec. 20, 31–40 (2010).

    Article 

    Google Scholar
     

  • Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw geographical maps. R package version 3.4.1 https://CRAN.R-project.org/package=maps (2022).

  • Barnes, R. & Sahr, K. dggridR: Discrete global grids for R. R package version 2.0.4 https://github.com/r-barnes/dggridR/ (2017).

  • Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gotelli, N. J. & Colwell, R. K. in Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. E. & McGill, B. J.) 39–54 (Oxford Univ. Press, 2011).

  • Baselga, A. Partitioning the turnover and nestedness components of beta diversity: partitioning beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Baselga, A. et al. betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.5.2 https://CRAN.R-project.org/package=betapart (2020).

  • Magurran, A. E. Ecological Diversity and its Measurement (Croom Helm, 1988).

  • Chao, A. et al. Approach to multiple-community similarity indices. Biometrics 64, 1178–1186 (2008).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Kubinec, R. Ordered beta regression: a parsimonious, well-fitting model for continuous data with lower and upper bounds. Polit. Anal. 31, 519–536 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Rosenblad, K. C. & Sax, D. F. A new framework for investigating biotic homogenization and exploring future trajectories: oceanic island plant and bird assemblages as a case study. Ecography 40, 1040–1049 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II, III. Proc. Akadamie Van Wet. Amst. 53, 386–392 (1950).

    MATH 

    Google Scholar
     

  • Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–6 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar
     

  • Brooks, E. M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).

    Article 
    MATH 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.0 https://CRAN.R-project.org/package=DHARMa (2021).

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

  • North, B. V., Curtis, D. & Sham, P. C. A note on the calculation of empirical P values from Monte Carlo procedures. Am. J. Hum. Genet. 71, 439–441 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Change Biol. 26, 54–67 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Pinsky, M. L. et al. Supporting data and code for: Warming and cooling catalyse widespread temporal turnover in biodiversity (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.13905417 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments