Sunday, March 9, 2025
No menu items!
HomeNatureVulnerability of amphibians to global warming

Vulnerability of amphibians to global warming

  • Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Luedtke, J. A. et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308–314 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Pottier, P. et al. A comprehensive database of amphibian heat tolerance. Sci. Data 9, 600 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Angilletta, M. J. Thermal Adaptation: a Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).

  • Mi, C. et al. Global Protected Areas as refuges for amphibians and reptiles under climate change. Nat. Commun. 14, 1389 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Carvalho, R. L. et al. Pervasive gaps in Amazonian ecological research. Curr. Biol. 33, 3495–3504 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nesi, P., Luiselli, L. M. & Vignoli, L. “Heaven” of data deficient species: the conservation status of the endemic amphibian fauna of Vietnam. Diversity 15, 872 (2023).

    Article 

    Google Scholar
     

  • Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).

    Article 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Murali, G., Iwamura, T., Meiri, S. & Roll, U. Future temperature extremes threaten land vertebrates. Nature 615, 461–467 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gunderson, A. R., Dillon, M. E. & Stillman, J. H. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529–1539 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Anderson, R. O., White, C. R., Chapple, D. G. & Kearney, M. R. A hierarchical approach to understanding physiological associations with climate. Glob. Ecol. Biogeogr. 31, 332–346 (2022).

    Article 

    Google Scholar
     

  • Briscoe, N. J. et al. Mechanistic forecasts of species responses to climate change: the promise of biophysical ecology. Glob. Change Biol. 29, 1451–1470 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Duarte, H. et al. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob. Change Biol. 18, 412–421 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2 (IPCC, 2021).

  • Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).

    Article 

    Google Scholar
     

  • van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pottier, P. et al. Developmental plasticity in thermal tolerance: ontogenetic variation, persistence, and future directions. Ecol. Lett. 25, 2245–2268 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Denny, M. W. in Air and Water: The Biology and Physics of Life’s Media 145–173 (Princeton Univ. Press, 1993).

  • Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Stark, G., Ma, L., Zeng, Z.-G., Du, W.-G. & Levy, O. Cool shade and not-so-cool shade: how habitat loss may accelerate thermal stress under current and future climate. Glob. Change Biol. 29, 6201–6216 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Nowakowski, A. J. et al. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conserv. Biol. 31, 96–105 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988–16993 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Greenberg, D. A. & Palen, W. J. Hydrothermal physiology and climate vulnerability in amphibians. Proc. R. Soc. B 288, 20202273 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, C.-T. et al. Open habitats increase vulnerability of amphibian tadpoles to climate warming across latitude. Glob. Ecol. Biogeogr. 32, 83–94 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Wu, N. C. et al. Global exposure risk of frogs to increasing environmental dryness. Nat. Clim. Change 14, 1314–1322 (2024).

  • Kearney, M. R. Activity restriction and the mechanistic basis for extinctions under climate warming. Ecol. Lett. 16, 1470–1479 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Enriquez-Urzelai, U., Nicieza, A. G., Montori, A., Llorente, G. A. & Urrutia, M. B. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. Oikos 2022, e08566 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Wang, W. W.-Y. & Gunderson, A. R. The physiological and evolutionary ecology of sperm thermal performance. Front. Physiol. 13, 754830 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Extreme escalation of heat failure rates in ectotherms with global warming. Nature 611, 93–98 (2022).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Garcia, R. A., Allen, J. L. & Clusella-Trullas, S. Rethinking the scale and formulation of indices assessing organism vulnerability to warmer habitats. Ecography 42, 1024–1036 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. Natl Acad. Sci. USA 117, 33365–33372 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • von May, R. et al. Thermal physiological traits in tropical lowland amphibians: vulnerability to climate warming and cooling. PLoS ONE 14, e0219759 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Bovo, R. P. et al. Beyond Janzen’s hypothesis: how amphibians that climb tropical mountains respond to climate variation. Integr. Org. Biol. 5, obad009 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arenas, M., Ray, N., Currat, M. & Excoffier, L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 29, 207–218 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogan, J. E. et al. Genetic and demographic consequences of range contraction patterns during biological annihilation. Sci. Rep. 13, 1691 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Blaustein, A. R. et al. Direct and indirect effects of climate change on amphibian populations. Diversity 2, 281–313 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Nowakowski, J. A. et al. Protected areas slow declines unevenly across the tetrapod tree of life. Nature 622, 101–106 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hocking, D. & Babbitt, K. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).

  • Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • McNutt, M. K. et al. Transparency in authors’ contributions and responsibilities to promote integrity in scientific publication. Proc. Natl Acad. Sci. USA 115, 2557–2560 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Nakagawa, S. et al. Method reporting with initials for transparency (MeRIT) promotes more granularity and accountability for author contributions. Nat. Commun. 14, 1788 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pottier, P. et al. Title, abstract and keywords: a practical guide to maximise the visibility and impact of academic papers. Proc. R. Soc. B 291, 20241222 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • South, A., Michael, S. & Massicotte, P. rnaturalearthhires: high resolution world vector map data from Natural Earth used in rnaturalearth. R package version 0.2.1 (2022).

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article 

    Google Scholar
     

  • Wickham, H. ggplot2: elegant graphics for data analysis. R package version 3.5.1 (2011).

  • Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).

    Article 
    MATH 

    Google Scholar
     

  • The IUCN Red List of Threatened Species (IUCN, 2021); www.iucnredlist.org.

  • Johnson, J. V. et al. What drives the evolution of body size in ectotherms? A global analysis across the amphibian tree of life. Glob. Ecol. Biogeogr. 32, 1311–1322 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Santini, L., Benítez-López, A., Ficetola, G. F. & Huijbregts, M. A. J. Length–mass allometries in amphibians. Integr. Zool. 13, 36–45 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).

    Article 
    MATH 

    Google Scholar
     

  • Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Speidel, M., Drechsler, J. & Jolani, S. R Package Hmi: a convenient tool for hierarchical multiple imputation and beyond (2018); www.econstor.eu/handle/10419/182156.

  • Callaghan, C. T., Nakagawa, S. & Cornwell, W. K. Global abundance estimates for 9,700 bird species. Proc. Natl Acad. Sci. USA 118, e2023170118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, P. C. & van Buuren, S. The effect of high prevalence of missing data on estimation of the coefficients of a logistic regression model when using multiple imputation. BMC Med. Res. Methodol. 22, 196 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Madley-Dowd, P., Hughes, R., Tilling, K. & Heron, J. The proportion of missing data should not be used to guide decisions on multiple imputation. J. Clin. Epidemiol. 110, 63–73 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can. J. Zool. 75, 1553–1560 (1997).

    Article 
    MATH 

    Google Scholar
     

  • Camacho, A. & Rusch, T. W. Methods and pitfalls of measuring thermal preference and tolerance in lizards. J. Therm. Biol. 68, 63–72 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355–371 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43, 85–96 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pincebourde, S. & Suppo, C. The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity. Integr. Comp. Biol. 56, 85–97 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tracy, C. R., Christian, K. A. & Tracy, C. R. Not just small, wet, and cold: effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology 91, 1477–1484 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Köhler, A. et al. Staying warm or moist? Operative temperature and thermal preferences of common frogs (Rana temporaria), and effects on locomotion. Herpetol. J. 21, 17–26 (2011).

    MATH 

    Google Scholar
     

  • Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-Solano, L. A. & Carvajalino-Fernández, M. A. The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Funct. Ecol. 27, 1145–1154 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Barton, M. G., Clusella-Trullas, S. & Terblanche, J. S. Spatial scale, topography and thermoregulatory behaviour interact when modelling species’ thermal niches. Ecography 42, 376–389 (2019).

    Article 
    ADS 

    Google Scholar
     

  • García-García, A. et al. Soil heat extremes can outpace air temperature extremes. Nat. Clim. Change 13, 1237–1241 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Davies-Colley, R. J., Payne, G. W. & van Elswijk, M. Microclimate gradients across a forest edge. N. Z. J. Ecol. 24, 111–121 (2000).


    Google Scholar
     

  • Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics (Springer, 2000).

  • Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: An r package for modelling meso- and microclimate. Methods Ecol. Evol. 10, 280–290 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tracy, C. R. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293–326 (1976).

    Article 
    MATH 

    Google Scholar
     

  • Enriquez-Urzelai, U., Kearney, M. R., Nicieza, A. G. & Tingley, R. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Glob. Change Biol. 25, 2633–2647 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kearney, M. R., Munns, S. L., Moore, D., Malishev, M. & Bull, C. M. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecol. Monogr. 88, 672–693 (2018).

    Article 

    Google Scholar
     

  • Kearney, M. R., Porter, W. P. & Huey, R. B. Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods Ecol. Evol. 12, 458–467 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Kearney, M. et al. Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31, 423–434 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Brattstrom, B. H. & Lawrence, P. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35, 148–156 (1962).

    Article 
    MATH 

    Google Scholar
     

  • Layne, J. R. & Claussen, D. L. The time courses of CTMax and CTMin acclimation in the salamander Desmognathus fuscus. J. Therm. Biol. 7, 139–141 (1982).

    Article 
    MATH 

    Google Scholar
     

  • Turriago, J. L., Tejedo, M., Hoyos, J. M., Camacho, A. & Bernal, M. H. The time course of acclimation of critical thermal maxima is modulated by the magnitude of temperature change and thermal daily fluctuations. J. Therm. Biol. 114, 103545 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dallas, J. & Warne, R. W. Heat hardening of a larval amphibian is dependent on acclimation period and temperature. J. Exp. Zool. A 339, 339–345 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Ruthsatz, K. et al. Acclimation capacity to global warming of amphibians and freshwater fishes: drivers, patterns, and data limitations. Glob. Change Biol. 30, e17318 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wood, S. & Scheipl, F. gamm4: generalized additive mixed models using mgcv and lme4 (2014).

  • Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: a simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Lara-Resendiz, R. A. & Luja, V. H. Body temperatures of some amphibians from Nayarit, Mexico. Rev. Mex. Biodivers. 89, 577–581 (2018).


    Google Scholar
     

  • Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Agudelo-Cantero, G. A. & Navas, C. A. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. J. Therm. Biol. 82, 43–51 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Alveal Riquelme, N. Relaciones Entre la Fisiología Térmica y las Características Bioclimáticas de Rhinella spinulosa (Anura: Bufonidae) en Chile a Través Del Enlace Mecanicista de Nicho Térmico. MSc thesis, Univ. Concepción (2015).

  • Alves, M. Tolerância Térmica em Espécies de Anuros Neotropicais do Gênero Dendropsophus Fitzinger 1843 e Efeito da Temperatura na Resposta à Predação. MSc thesis, Univ. Estadual de Santa Cruz (2016).

  • Anderson, R. C. O. & Andrade, D. V. Trading heat and hops for water: Dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad. Ecol. Evol. 7, 9066–9075 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aponte Gutiérrez, A. Endurecimiento Térmico en Pristimantis medemi (Anura: Craugastoridae), en Coberturas Boscosas del Municipio de Villavicencio (Meta). MSc thesis, Univ. Nacional de Colombia (2020).

  • Arrigada García, K. Conductas Térmica en dos Poblaciones de Batrachyla taeniata Provenientes de la Localidad de Ucúquer en la Región de O’Higgins y de la Localidad de Hualpén en la Región del Bío-Bío. BSc thesis, Univ. de Concepción (2019).

  • Azambuja, G., Martins, I. K., Franco, J. L. & Santos, T. Gdos Effects of mancozeb on heat shock protein 70 (HSP70) and its relationship with the thermal physiology of Physalaemus henselii (Peters, 1872) tadpoles (Anura: Leptodactylidae). J. Therm. Biol. 98, 102911 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bacigalupe, L. D. et al. Natural selection on plasticity of thermal traits in a highly seasonal environment. Evol. Appl. 11, 2004–2013 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Barria, A. M. & Bacigalupe, L. D. Intraspecific geographic variation in thermal limits and acclimatory capacity in a wide distributed endemic frog. J. Therm. Biol. 69, 254–260 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Beltrán, I., Ramírez-Castañeda, V., Rodríguez-López, C., Lasso, E. & Amézquita, A. Dealing with hot rocky environments: critical thermal maxima and locomotor performance in Leptodactylus lithonaetes (Anura: Leptodactylidae). Herpetol. J. 29, 155–161 (2019).

    Article 

    Google Scholar
     

  • Berkhouse, C. & Fries, J. Critical thermal maxima of juvenile and adult San Marcos salamanders (Eurycea nana). Southwest. Nat. 40, 430–434 (1995).


    Google Scholar
     

  • Blem, C. R., Ragan, C. A. & Scott, L. S. The thermal physiology of two sympatric treefrogs Hyla cinerea and Hyla chrysoscelis (Anura; Hylidae). Comp. Biochem. Physiol. A 85, 563–570 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonino, M. F., Cruz, F. B. & Perotti, M. G. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J. Therm. Biol. 94, 102744 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bovo, R. P. Fisiologia Térmica e Balanço Hídrico em Anfíbios Anuros. PhD thesis, Univ. Estadual Paulista (2015).

  • Brattstrom, B. H. Thermal acclimation in Australian amphibians. Comp. Biochem. Physiol. 35, 69–103 (1970).

    Article 
    MATH 

    Google Scholar
     

  • Brattstrom, B. H. & Regal, P. Rate of thermal acclimation in the Mexican salamander Chiropterotriton. Copeia 1965, 514–515 (1965).

    Article 
    MATH 

    Google Scholar
     

  • Brattstrom, B. H. A preliminary review of the thermal requirements of amphibians. Ecology 44, 238–255 (1963).

    Article 
    MATH 

    Google Scholar
     

  • Brattstrom, B. H. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111 (1968).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brown, H. A. The heat resistance of some anuran tadpoles (Hylidae and Pelobatidae). Copeia 1969, 138 (1969).

    Article 
    MATH 

    Google Scholar
     

  • Burke, E. M. & Pough, F. H. The role of fatigue in temperature resistance of salamanders. J. Therm. Biol. 1, 163–167 (1976).

    Article 
    MATH 

    Google Scholar
     

  • Burrowes, P. A., Navas, C. A., Jiménez-Robles, O., Delgado, P. & De La Riva, I. Climatic heterogeneity in the Bolivian Andes: are frogs trapped? South Am. J. Herpetol. 18, 1–12 (2020).

    Article 

    Google Scholar
     

  • Bury, R. B. Low thermal tolerances of stream amphibians in the Pacific Northwest: Implications for riparian and forest management. Appl. Herpetol. 5, 63–74 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Castellanos García, L. A. Days of Futures Past: Integrating Physiology, Microenvironments, and Biogeographic History to Predict Response of Frogs in Neotropical Dry-Forest to Global Warming. MSc thesis, Univ. de los Andes (2017).

  • Castro, B. Influence of Environment on Thermal Ecology of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the eastern Andes of Colombia. MSc thesis, Univ. de los Andes (2019).

  • Catenazzi, A., Lehr, E. & Vredenburg, V. T. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes. Conserv. Biol. 28, 509–517 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, L.-W. Heat Tolerance and its Plasticity in Larval Bufo bankorensis From Different Altitudes. MSc thesis, National Cheng Kung Univ. (2002).

  • Chavez Landi, P. A. Fisiología Térmica de un Depredador Dasythemis sp. (Odonata: Libellulidae) y su Presa Hypsiboas pellucens (Anura: Hylidae) y sus Posibles Implicaciones Frente al Cambio Climático. BSc thesis, Pontificia Univ. Católica Del Ecuador (2017).

  • Chen, T.-C., Kam, Y.-C. & Lin, Y.-S. Thermal physiology and reproductive phenology of Buergeria japonica (Rhacophoridae) breeding in a stream and a geothermal hotspring in Taiwan. Zool. Sci. 18, 591–596 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Cheng, C.-B. A Study of Warming Tolerance and Thermal Acclimation Capacity of Tadpoles in Taiwan. MSc thesis, Tunghai Univ. (2017).

  • Cheng, Y.-J. Effect of Salinity on the Critical Thermal Maximum of Tadpoles Living in Brackish Water. MSC thesis, Tunghai Univ. (2017).

  • Christian, K. A., Nunez, F., Clos, L. & Diaz, L. Thermal relations of some tropical frogs along an altitudinal gradient. Biotropica 20, 236–239 (1988).

    Article 

    Google Scholar
     

  • Claussen, D. L. The thermal relations of the tailed frog, Ascaphus truei, and the Pacific treefrog, Hyla regilla. Comp. Biochem. Physiol. A 44, 137–153 (1973).

    Article 
    MATH 

    Google Scholar
     

  • Claussen, D. L. Thermal acclimation in ambystomatid salamanders. Comp. Biochem. Physiol. A 58, 333–340 (1977).

    Article 
    MATH 

    Google Scholar
     

  • Contreras Cisneros, J. Temperatura Crítica Máxima, Tolerancia al frío y Termopreferendum del Tritón Del Montseny (Calotriton arnoldii). MSc thesis, Univ. de Barcelona (2019).

  • Contreras Oñate, S. Posible Efecto de las Temperaturas de Aclimatación Sobre las Respuestas Térmicas en Temperaturas Críticas Máximas (TCmás) y Mínimas (TCmín) de una Población de Batrachyla taeniata (Girard, 1955). BSc thesis, Univ. de Concepción (2016).

  • Cooper, R. D. & Shaffer, H. B. Allele-specific expression and gene regulation help explain transgressive thermal tolerance in non-native hybrids of the endangered California tiger salamander (Ambystoma californiense). Mol. Ecol. 30, 987–1004 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crow, J. C., Forstner, M. R. J., Ostr, K. G. & Tomasso, J. R. The role of temperature on survival and growth of the Barton Springs salamander (Eurycea sosorum). Herpetol. Conserv. Biol. 11, 328–334 (2016).


    Google Scholar
     

  • Cupp, P. V. Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica 36, 234–244 (1980).

    MATH 

    Google Scholar
     

  • Dabruzzi, T. F., Wygoda, M. L. & Bennett, W. A. Some like it hot: Heat tolerance of the crab-eating frog, Fejervarya cancrivora. Micronesica 43, 101–106 (2012).


    Google Scholar
     

  • Dainton, B. H. Heat tolerance and thyroid activity in developing tadpoles and juvenile adults of Xenopus laevis (Daudin). J. Therm. Biol. 16, 273–276 (1991).

    Article 

    Google Scholar
     

  • Daniel, N. J. J. Impact of Climate Change on Singapore Amphibians. PhD thesis, National Univ. Singapore (2013).

  • Davies, S. J., McGeoch, M. A. & Clusella-Trullas, S. Plasticity of thermal tolerance and metabolism but not water loss in an invasive reed frog. Comp. Biochem. Physiol. A 189, 11–20 (2015).

    Article 
    CAS 

    Google Scholar
     

  • de Oliviera Anderson, R. C., Bovo, R. P. & Andrade, D. V. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest. J. Therm. Biol. 74, 77–83 (2018).

    Article 

    Google Scholar
     

  • de Vlaming, V. L. & Bury, R. B. Thermal selection in tadpoles of the tailed-frog, Ascaphus truei. J. Herpetol. 4, 179–189 (1970).

    Article 
    MATH 

    Google Scholar
     

  • Delson, J. & Whitford, W. G. Critical thermal maxima in several life history stages in desert and montane populations of Ambystoma tigrinum. Herpetologica 29, 352–355 (1973).

    MATH 

    Google Scholar
     

  • Duarte, H. S. A Comparative Study of the Thermal Tolerance of Tadpoles of Iberian anurans. MSc thesis, Univ. de Lisboa (2011).

  • Dunlap, D. Evidence for a daily rhythm of heat resistance in cricket frogs, Acris crepitans. Copeia 1969, 852–854 (1969).

    Article 
    MATH 

    Google Scholar
     

  • Dunlap, D. G. Critical thermal maximum as a function of temperature of acclimation in two species of Hylid frogs. Physiol. Zool. 41, 432–439 (1968).

    Article 
    MATH 

    Google Scholar
     

  • Elwood, J. R. L. Variation in hsp70 Levels and Thermotolerance Among Terrestrial Salamanders of the Plethodon glutinosus Complex. PhD thesis, Drexel Univ. (2003).

  • Enriquez-Urzelai, U. et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 189, 385–394 (2019).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Erskine, D. J. & Hutchison, V. H. Reduced thermal tolerance in an amphibian treated with melatonin. J. Therm. Biol. 7, 121–123 (1982).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Escobar Serrano, D. Acclimation Scope of the Critical Thermal Limits in Agalychnis spurrelli (Hylidae) and Gastrotheca pseustes (Hemiphractidae) and Their Implications Under Climate Change Scenarios. BSc thesis, Pontificia Univ. Católica Del Ecuador (2016).

  • Fan, X., Lei, H. & Lin, Z. Ontogenetic shifts in selected body temperature and thermal tolerance of the tiger frog, Hoplobatrachus chinensis. Acta Ecol. Sin. 32, 5574–5580 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Fan, X. L., Lin, Z. H. & Scheffers, B. R. Physiological, developmental, and behavioral plasticity in response to thermal acclimation. J. Therm. Biol. 97, 102866 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fernández-Loras, A. et al. Infection with Batrachochytrium dendrobatidis lowers heat tolerance of tadpole hosts and cannot be cleared by brief exposure to CTmax. PLoS ONE 14, e0216090 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Floyd, R. B. Ontogenetic change in the temperature tolerance of larval Bufo marinus (Anura: Bufonidae). Comp. Biochem. Physiol. A 75, 267–271 (1983).

    Article 
    MATH 

    Google Scholar
     

  • Floyd, R. B. Effects of photoperiod and starvation on the temperature tolerance of larvae of the giant toad, Bufo marinus. Copeia 1985, 625–631 (1985).

    Article 
    MATH 

    Google Scholar
     

  • Fong, S.-T. Thermal Tolerance of Adult Asiatic Painted Frog Kaloula pulchra from Different Populations. MSc thesis, National Univ. Tainan (2014).

  • Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Frost, J. S. & Martin, E. W. A comparison of distribution and high temperature tolerance in Bufo americanus and Bufo woodhousii fowleri. Copeia 1971, 750 (1971).

    Article 

    Google Scholar
     

  • Gatz, A. J. Critical thermal maxima of Ambystoma maculatum (Shaw) and Ambystoma jeffersonianum (Green) in relation to time of breeding. Herpetologica 27, 157–160 (1971).

    MATH 

    Google Scholar
     

  • Gatz, A. J. Intraspecific variations in critical thermal maxima of Ambystoma maculatum. Herpetologica 29, 264–268 (1973).

    MATH 

    Google Scholar
     

  • Geise, W. & Linsenmair, K. E. Adaptations of the reed frog Hyperolius viridiflavus to its arid environment—IV. Oecological significance of water economy with comments on thermoregulation and energy allocation. Oecologia 77, 327–338 (1988).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • González-del-Pliego, P. et al. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. J. Anim. Ecol. 89, 2451–2460 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gouveia, S. F. et al. Climatic niche at physiological and macroecological scales: The thermal tolerance–geographical range interface and niche dimensionality. Glob. Ecol. Biogeogr. 23, 446–456 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Gray, R. Lack of physiological differentiation in three color morphs of the cricket frog (Acris crepitans) in Illinois. Trans. Ill. State Acad. Sci. 70, 73–79 (1977).

    ADS 
    MATH 

    Google Scholar
     

  • Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Guevara-Molina, E. C., Gomes, F. R. & Camacho, A. Effects of dehydration on thermoregulatory behavior and thermal tolerance limits of Rana catesbeiana (Shaw, 1802). J. Therm. Biol. 93, 102721 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gutiérrez Pesquera, L. Una Valoración Macrofisiológica de la Vulnerabilidad al Calentamiento Global. Análisis de los Límites de Tolerancia Térmica en Comunidades de Anfibios en Gradientes Latitudinales y Altitudinales. MSc thesis, Pontificia Univ. Católica Del Ecuador (2015).

  • Gutiérrez Pesquera, M. Thermal Tolerance Across Latitudinal and Altitudinal Gradients in Tadpoles. PhD thesis, Univ. de Sevilla (2016).

  • Gutiérrez-Pesquera, L. M. et al. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 43, 1166–1178 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Gvoždík, L., Puky, M. & Šugerková, M. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Biol. J. Linn. Soc. 90, 627–636 (2007).

    Article 

    Google Scholar
     

  • Heatwole, H., De Austin, S. B. & Herrero, R. Heat tolerances of tadpoles of two species of tropical anurans. Comp. Biochem. Physiol. 27, 807–815 (1968).

    Article 
    MATH 

    Google Scholar
     

  • Heatwole, H., Mercado, N. & Ortiz, E. Comparison of critical thermal maxima of two species of Puerto Rican frogs of the genus Eleutherodactylus. Physiol. Zool. 38, 1–8 (1965).

    Article 

    Google Scholar
     

  • Holzman, N. & McManus, J. J. Effects of acclimation on metabolic rate and thermal tolerance in the carpenter frog, Rana vergatipes. Comp. Biochem. Physiol. A 45, 833–842 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoppe, D. M. Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica 34, 318–321 (1978).

    MATH 

    Google Scholar
     

  • Hou, P.-C. Thermal Tolerance and Preference in the Adult Amphibians from Different Altitudinal LTER Sites. MSc thesis, National Cheng Kung Univ. (2003).

  • Howard, J. H., Wallace, R. L. & Stauffer, J. R. Jr Critical thermal maxima in populations of Ambystoma macrodactylum from different elevations. J. Herpetol. 17, 400–402 (1983).

    Article 
    MATH 

    Google Scholar
     

  • Hutchison, V. H. & Ritchart, J. P. Annual cycle of thermal tolerance in the salamander, Necturus maculosus. J. Herpetol. 23, 73–76 (1989).

    Article 
    MATH 

    Google Scholar
     

  • Hutchison, V. H. The distribution and ecology of the cave salamander, Eurycea lucifuga. Ecol. Monogr. 28, 2–20 (1958).

    Article 
    MATH 

    Google Scholar
     

  • Hutchison, V. H. Critical thermal maxima in salamanders. Physiol. Zool. 34, 92–125 (1961).

    Article 
    MATH 

    Google Scholar
     

  • Hutchison, V. H., Engbretson, G. & Turney, D. Thermal acclimation and tolerance in the hellbender, Cryptobranchus alleganiensis. Copeia 1973, 805–807 (1973).

    Article 

    Google Scholar
     

  • Hutchison, V. H. & Rowlan, S. D. Thermal acclimation and tolerance in the mudpuppy, Necturus maculosus. J. Herpetol. 9, 367–368 (1975).

    Article 
    MATH 

    Google Scholar
     

  • Jiang, S., Yu, P. & Hu, Q. A study on the critical thermal maxima of five species of salamanders of China. Acta Herpetol. Sin. 6, 56–62 (1987).

    MATH 

    Google Scholar
     

  • John-Alder, H. B., Morin, P. J. & Lawler, S. Thermal physiology, phenology, and distribution of tree frogs. Am. Nat. 132, 506–520 (1988).

    Article 
    MATH 

    Google Scholar
     

  • Johnson, C. R. Daily variation in the thermal tolerance of Litoria caerulea (Anura: Hylidae). Comp. Biochem. Physiol. A 40, 1109–1111 (1971).

    Article 
    MATH 

    Google Scholar
     

  • Johnson, C. R. Thermal relations and water balance in the day frog, Taudactylus diurnus, from an Australian rain forest. Aust. J. Zool. 19, 35–39 (1971).

    Article 
    MATH 

    Google Scholar
     

  • Johnson, C. R. Diel variation in the thermal tolerance of Litoria gracilenta (Anura: Hylidae). Comp. Biochem. Physiol. A 41, 727–730 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, C. R. & Prine, J. E. The effects of sublethal concentrations of organophosphorus insecticides and an insect growth regulator on temperature tolerance in hydrated and dehydrated juvenile western toads, Bufo boreas. Comp. Biochem. Physiol. A 53, 147–149 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, C. R. Observations on body temperatures, critical thermal maxima and tolerance to water loss in the Australian hylid, Hyla caerulea (White). Proc. R. Soc. Qld. 82, 47–50 (1970).

    MATH 

    Google Scholar
     

  • Johnson, C. R. Thermal relations and daily variation in the thermal tolerance in Bufo marinus. J. Herpetol. 6, 35 (1972).

    Article 
    MATH 

    Google Scholar
     

  • Johnson, C. Thermal relations in some southern and eastern Australian anurans. Proc. R. Soc. Qld. 82, 87–94 (1971).

    MATH 

    Google Scholar
     

  • Johnson, C. The effects of five organophosphorus insecticides on thermal stress in tadpoles of the Pacific tree frog, Hyla regilla. Zool. J. Linn. Soc. 69, 143–147 (1980).

    Article 
    MATH 

    Google Scholar
     

  • Katzenberger, M., Duarte, H., Relyea, R., Beltrán, J. F. & Tejedo, M. Variation in upper thermal tolerance among 19 species from temperate wetlands. J. Therm. Biol. 96, 102856 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Katzenberger, M. et al. Swimming with predators and pesticides: how environmental stressors affect the thermal physiology of tadpoles. PLoS ONE 9, e98265 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    MATH 

    Google Scholar
     

  • Katzenberger, M., Hammond, J., Tejedo, M. & Relyea, R. Source of environmental data and warming tolerance estimation in six species of North American larval anurans. J. Therm. Biol. 76, 171–178 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Katzenberger, M. Thermal Tolerance and Sensitivity of Amphibian Larvae from Palearctic and Neotropical Communities. MSc thesis, Univ. de Lisboa (2013).

  • Katzenberger, M. Impact of Global warming in Holarctic and Neotropical Communities of Amphibians. PhD thesis, Univ. de Sevilla (2014).

  • Kern, P., Cramp, R. L. & Franklin, C. E. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist. J. Exp. Biol. 217, 1246–1252 (2014).

    PubMed 
    MATH 

    Google Scholar
     

  • Kern, P., Cramp, R. L., Seebacher, F., Ghanizadeh Kazerouni, E. & Franklin, C. E. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits. Comp. Biochem. Physiol. A 190, 75–82 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kern, P., Cramp, R. L. & Franklin, C. E. Physiological responses of ectotherms to daily temperature variation. J. Exp. Biol. 218, 3068–3076 (2015).

    PubMed 
    MATH 

    Google Scholar
     

  • Komaki, S., Igawa, T., Lin, S.-M. & Sumida, M. Salinity and thermal tolerance of Japanese stream tree frog (Buergeria japonica) tadpoles from island populations. Herpetol. J. 26, 207–211 (2016).


    Google Scholar
     

  • Komaki, S., Lau, Q. & Igawa, T. Living in a Japanese onsen: field observations and physiological measurements of hot spring amphibian tadpoles, Buergeria japonica. Amphib. Reptil. 37, 311–314 (2016).

    Article 

    Google Scholar
     

  • Krakauer, T. Tolerance limits of the toad, Bufo marinus, in South Florida. Comp. Biochem. Physiol. 33, 15–26 (1970).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kurabayashi, A. et al. Improved transport of the model amphibian, Xenopus tropicalis, and its viable temperature for transport. Curr. Herpetol. 33, 75–87 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Lau, E. T. C., Leung, K. M. Y. & Karraker, N. E. Native amphibian larvae exhibit higher upper thermal limits but lower performance than their introduced predator Gambusia affinis. J. Therm. Biol. 81, 154–161 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Layne, J. R. & Claussen, D. L. Seasonal variation in the thermal acclimation of critical thermal maxima (CTMax) and minima (CTMin) in the salamander Eurycea bislineata. J. Therm. Biol. 7, 29–33 (1982).

    Article 

    Google Scholar
     

  • Lee, P.-T. Acidic Effect on Tadpoles Living in Container Habitats. MSc thesis Tunghai Univ. (2019).

  • Longhini, L. S., De Almeida Prado, C. P., Bícego, K. C., Zena, L. A. & Gargaglioni, L. H. Measuring cardiorespiratory variables on small tadpoles using a non-invasive methodology. Rev. Cubana Investig. Biomed. 38, e0185 (2019).

  • López Rosero, A. C. Ontogenetic Variation of Thermal Tolerance in two Anuran Species of Ecuador: Gastrotheca pseustes (Hemiphractidae) and Smilisca phaeota (Hylidae) and Their Relative Vulnerability to Environmental Temperature Change. BSc thesis, Pontificia Univ. Católica Del Ecuador (2015).

  • Lotshaw, D. P. Temperature adaptation and effects of thermal acclimation in Rana sylvatica and Rana catesbeiana. Comp. Biochem. Physiol. A 56, 287–294 (1977).

    Article 

    Google Scholar
     

  • Lu, H.-L., Wu, Q., Geng, J. & Dang, W. Swimming performance and thermal resistance of juvenile and adult newts acclimated to different temperatures. Acta Herpetol. 11, 189–195 (2016).


    Google Scholar
     

  • Lu, H. L., Geng, J., Xu, W., Ping, J. & Zhang, Y. P. Physiological response and changes in swimming performance after thermal acclimation in juvenile Chinese fire-belly newts, Cynops orientalis. Acta Ecol. Sin. 37, 1603–1610 (2017).


    Google Scholar
     

  • Madalozzo, B. Variação Latitudinal nos Limites de Tolerância e Plasticidade Térmica em Anfíbios em um Cenário de Mudanças Climáticas: Efeito dos Micro-habitats, Sazonalidade e Filogenia. PhD thesis, Univ. Federal de Santa Maria (2018).

  • Mahoney, J. J. & Hutchison, V. H. Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and a temperate frog. Oecologia 2, 143–161 (1969).

    Article 
    CAS 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Maness, J. D. & Hutchison, V. H. Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima. J. Therm. Biol. 5, 225–233 (1980).

    Article 
    MATH 

    Google Scholar
     

  • Manis, M. L. & Claussen, D. L. Environmental and genetic influences on the thermal physiology of Rana sylvatica. J. Therm. Biol. 11, 31–36 (1986).

    Article 
    MATH 

    Google Scholar
     

  • Markle, T. M. & Kozak, K. H. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change. Ecol. Evol. 8, 4644–4656 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Marshall, E. & Grigg, G. C. Acclimation of CTM, LD50, and rapid loss of acclimation of thermal preferendum in tadpoles of Limnodynastes peronii (Anura, Myobatrachidae). Aust. Zool. 20, 447–456 (1980).


    Google Scholar
     

  • Mathias, J. H. The Comparative Ecologies of Two Species of Amphibia (B. bufo and B. calamita) on the Ainsdale Sand Dunes National Nature Reserve. PhD thesis, Univ. Manchester (1971).

  • McManus, J. J. & Nellis, D. W. The critical thermal maximum of the marine toad, Bufo marinus. Caribb. J. Sci. 15, 67–70 (1975).

    MATH 

    Google Scholar
     

  • Menke, M. E. & Claussen, D. L. Thermal acclimation and hardening in tadpoles of the bullfrog, Rana catesbeiana. J. Therm. Biol. 7, 215–219 (1982).

    Article 
    MATH 

    Google Scholar
     

  • Merino-Viteri, A. R. The Vulnerability of Microhylid frogs Cophixalus spp., to Climate Change in the Australian Wet Tropics. PhD thesis, James Cook Univ. (2018).

  • Messerman, A. F. Tales of an ‘Invisible’ Life Stage: Survival and Physiology Among Terrestrial Juvenile Ambystomatid Salamanders. PhD thesis, Univ. Missouri (2019).

  • Meza-Parral, Y., García-Robledo, C., Pineda, E., Escobar, F. & Donnelly, M. A. Standardized ethograms and a device for assessing amphibian thermal responses in a warming world. J. Therm. Biol. 89, 102565 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, K. & Packard, G. C. Critical thermal maximum: ecotypic variation between montane and piedmont chorus frogs (Pseudacris triseriata, Hylidae). Experientia 30, 355–356 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, K. & Packard, G. C. An altitudinal cline in critical thermal maxima of chorus frogs (Pseudacris triseriata). Am. Nat. 111, 267–277 (1977).

    Article 

    Google Scholar
     

  • Mueller, C. A., Bucsky, J., Korito, L. & Manzanares, S. Immediate and persistent effects of temperature on oxygen consumption and thermal tolerance in embryos and larvae of the Baja California chorus frog, Pseudacris hypochondriaca. Front. Physiol. 10, 754 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navas, C. A., Antoniazzi, M. M., Carvalho, J. E., Suzuki, H. & Jared, C. Physiological basis for diurnal activity in dispersing juvenile Bufo granulosus in the Caatinga, a Brazilian semi-arid environment. Comp. Biochem. Physiol. A 147, 647–657 (2007).

    Article 

    Google Scholar
     

  • Navas, C. A., Úbeda, C. A., Logares, R. & Jara, F. G. Thermal tolerances in tadpoles of three species of Patagonian anurans. South Am. J. Herpetol. 5, 89–96 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Nietfeldt, J. W., Jones, S. M., Droge, D. L. & Ballinger, R. E. Rate of thermal acclimation of larval Ambystoma tigrinum. J. Herpetol. 14, 209–211 (1980).

    Article 

    Google Scholar
     

  • Nol, R. & Ultsch, G. R. The roles of temperature and dissolved oxygen in microhabitat selection by the tadpoles of a frog (Rana pipiens) and a toad (Bufo terrestris). Copeia 1981, 645–652 (1981).

    Article 

    Google Scholar
     

  • Novarro, A. J. Thermal Physiology in a Widespread Lungless Salamander. PhD thesis, Univ. Maryland (2018).

  • Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Orille, A. C., McWhinnie, R. B., Brady, S. P. & Raffel, T. R. Positive effects of acclimation temperature on the critical thermal maxima of Ambystoma mexicanum and Xenopus laevis. J. Herpetol. 54, 289–292 (2020).

    Article 

    Google Scholar
     

  • Oyamaguchi, H. M. et al. Thermal sensitivity of a Neotropical amphibian (Engystomops pustulosus) and its vulnerability to climate change. Biotropica 50, 326–337 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Paez Vacas, M. I. Mechanisms of Population Divergence Along Elevational Gradients in the Tropics. PhD thesis, Colorado State Univ. (2016).

  • Paulson, B. K. & Hutchison, V. H. Blood changes in Bufo cognatus following acute heat stress. Comp. Biochem. Physiol. A 87, 461–466 (1987).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Paulson, B. & Hutchison, V. Origin of the stimulus for muscular spasms at the critical thermal maximum in anurans. Copeia 1987, 810–813 (1987).

    Article 
    MATH 

    Google Scholar
     

  • Percino-Daniel, R. et al. Environmental heterogeneity shapes physiological traits in tropical direct-developing frogs. Ecol. Evol. 11, 6688–6702 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Perotti, M. G., Bonino, M. F., Ferraro, D. & Cruz, F. B. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Zoology 127, 95–105 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Pintanel, P., Tejedo, M., Almeida-Reinoso, F., Merino-Viteri, A. & Gutiérrez-Pesquera, L. M. Critical thermal limits do not vary between wild-caught and captive-bred tadpoles of Agalychnis spurrelli (Anura: Hylidae). Diversity 12, 43 (2020).

  • Pintanel, P., Tejedo, M., Ron, S. R., Llorente, G. A. & Merino-Viteri, A. Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. J. Biogeogr. 46, 1664–1675 (2019).

    Article 

    Google Scholar
     

  • Pintanel, P. Thermal Adaptation of Amphibians in Tropical Mountains. Consequences of Global Warming. PhD thesis, Univ. de Barcelona (2018).

  • Pintanel, P., Tejedo, M., Salinas-Ivanenko, S., Jervis, P. & Merino-Viteri, A. Predators like it hot: thermal mismatch in a predator-prey system across an elevational tropical gradient. J. Anim. Ecol. 90, 1985–1995 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pough, F. H. Natural daily temperature acclimation of eastern red efts, Notophthalmus v. viridescens (Rafinesque) (Amphibia: Caudata). Comp. Biochem. Physiol. A 47, 71–78 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pough, F. H., Stewart, M. M. & Thomas, R. G. Physiological basis of habitat partitioning in Jamaican Eleutherodactylus. Oecologia 27, 285–293 (1977).

    Article 
    PubMed 
    ADS 
    MATH 

    Google Scholar
     

  • Quiroga, L. B., Sanabria, E. A., Fornés, M. W., Bustos, D. A. & Tejedo, M. Do sublethal concentrations of chlorpyrifos induce changes in the thermal sensitivity and tolerance of anuran tadpoles in the toad Rhinella arenarum? Chemosphere 219, 671–677 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rausch, C. The Thermal Ecology of the Red-Spotted Toad, Bufo punctatus, Across Life History. BSc thesis, Univ. Nevada (2007).

  • Reichenbach, N. & Brophy, T. R. Natural history of the Peaks of Otter salamander (Plethodon hubrichti) along an elevational gradient. Herpetol. Bull. 141, 7–15 (2017).

  • Reider, K. E., Larson, D. J., Barnes, B. M. & Donnelly, M. A. Thermal adaptations to extreme freeze–thaw cycles in the high tropical Andes. Biotropica 53, 296–306 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Richter-Boix, A. et al. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 69, 2210–2226 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Riquelme, N. A., Díaz-Páez, H. & Ortiz, J. C. Thermal tolerance in the Andean toad Rhinella spinulosa (Anura: Bufonidae) at three sites located along a latitudinal gradient in Chile. J. Therm. Biol. 60, 237–245 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ritchart, J. P. & Hutchison, V. H. The effects of ATP and cAMP on the thermal tolerance of the mudpuppy, Necturus maculosus. J. Therm. Biol. 11, 47–51 (1986).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Rivera-Burgos, A. C. Habitat Suitability for Eleutherodactylus frogs in Puerto Rico: Indexing Occupancy, Abundance and Reproduction to Climatic and Habitat Characteristics. MSc thesis, North Carolina State Univ. (2019).

  • Rivera-Ordonez, J. M., Nowakowski, A. J., Manansala, A., Thompson, M. E. & Todd, B. D. Thermal niche variation among individuals of the poison frog, Oophaga pumilio, in forest and converted habitats. Biotropica 51, 747–756 (2019).

    Article 

    Google Scholar
     

  • Romero Barreto, P. Requerimientos Fisiológicos y Microambientales de dos Especies de Anfibios (Scinax ruber e Hyloxalus yasuni) del Bosque Tropical de Yasuní y sus Implicaciones Ante el Cambio Climático. BSc thesis, Pontificia Univ. Católica Del Ecuador (2013).

  • Ruiz-Aravena, M. et al. Impact of global warming at the range margins: Phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecol. Evol. 4, 4467–4475 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ruthsatz, K. et al. Thyroid hormone levels and temperature during development alter thermal tolerance and energetics of Xenopus laevis larvae. Conserv. Physiol. 6, coy059 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruthsatz, K. et al. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J. Comp. Physiol. B 190, 297–315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rutledge, P. S., Spotila, J. R. & Easton, D. P. Heat hardening in response to two types of heat shock in the lungless salamanders Eurycea bislineata and Desmognathus ochrophaeus. J. Therm. Biol. 12, 235–241 (1987).

    Article 

    Google Scholar
     

  • Sanabria, E. et al. Effect of salinity on locomotor performance and thermal extremes of metamorphic Andean toads (Rhinella spinulosa) from Monte Desert, Argentina. J. Therm. Biol. 74, 195–200 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sanabria, E. A., González, E., Quiroga, L. B. & Tejedo, M. Vulnerability to warming in a desert amphibian tadpole community: the role of interpopulational variation. J. Zool. 313, 283–296 (2021).

    Article 

    Google Scholar
     

  • Sanabria, E. A. & Quiroga, L. B. Change in the thermal biology of tadpoles of Odontophrynus occidentalis from the Monte Desert, Argentina: responses to photoperiod. J. Therm. Biol. 36, 288–291 (2011).

    Article 

    Google Scholar
     

  • Sanabria, E. A., Quiroga, L. B., González, E., Moreno, D. & Cataldo, A. Thermal parameters and locomotor performance in juvenile of Pleurodema nebulosum (Anura: Leptodactylidae) from the Monte Desert. J. Therm. Biol. 38, 390–395 (2013).

    Article 

    Google Scholar
     

  • Sanabria, E. A., Quiroga, L. B. & Martino, A. L. Seasonal changes in the thermal tolerances of the toad Rhinella arenarum (Bufonidae) in the Monte Desert of Argentina. J. Therm. Biol. 37, 409–412 (2012).

    Article 

    Google Scholar
     

  • Sanabria, E. A., Quiroga, L. B. & Martino, A. L. Seasonal changes in the thermal tolerances of Odontophrynus occidentalis (Berg, 1896) (Anura: Cycloramphidae). Belg. J. Zool. 143, 23–29 (2013).

    Article 

    Google Scholar
     

  • Sanabria, E. A. et al. Thermal ecology of the post-metamorphic Andean toad (Rhinella spinulosa) at elevation in the Monte Desert, Argentina. J. Therm. Biol. 52, 52–57 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sanabria, E. A., Vaira, M., Quiroga, L. B., Akmentins, M. S. & Pereyra, L. C. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). J. Therm. Biol. 41, 1–5 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sanabria, E. A. & Quiroga, L. B. Thermal parameters changes in males of Rhinella arenarum (Anura: Bufonidae) related to reproductive periods. Rev. Biol. Trop. 59, 347–353 (2011).

    PubMed 

    Google Scholar
     

  • Scheffers, B. R. et al. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica 45, 628–635 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Schmid, W. D. High temperature tolerances of Bufo hemiophrys and Bufo cognatus. Ecology 46, 559–560 (1965).

    Article 
    MATH 

    Google Scholar
     

  • Sealer, J. A. & West, B. W. Critical thermal maxima of some Arkansas salamanders in relation to thermal acclimation. Herpetologica 25, 122–124 (1969).


    Google Scholar
     

  • Seibel, R. V. Variables affecting the critical thermal maximum of the leopard frog, Rana pipiens Schreber. Herpetologica 26, 208–213 (1970).

    MATH 

    Google Scholar
     

  • Sherman, E. Ontogenetic change in thermal tolerance of the toad Bufo woodhousii fowleri. Comp. Biochem. Physiol. A 65, 227–230 (1980).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sherman, E. Thermal biology of newts (Notophthalmus viridescens) chronically infected with a naturally occurring pathogen. J. Therm. Biol. 33, 27–31 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Sherman, E., Baldwin, L., Fernández, G. & Deurell, E. Fever and thermal tolerance in the toad Bufo marinus. J. Therm. Biol. 16, 297–301 (1991).

    Article 

    Google Scholar
     

  • Sherman, E. & Levitis, D. Heat hardening as a function of developmental stage in larval and juvenile Bufo americanus and Xenopus laevis. J. Therm. Biol. 28, 373–380 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Shi, L., Zhao, L., Ma, X. & Ma, X. Selected body temperature and thermal tolerance of tadpoles of two frog species (Fejervarya limnocharis and Microhyla ornata) acclimated under different thermal conditions. Acta Ecol. Sin. 32, 465–471 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Simon, M. N., Ribeiro, P. L. & Navas, C. A. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: Implications for warming impact prediction. J. Therm. Biol. 48, 36–44 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Simon, M. Plasticidade Fenotípica em Relação à Temperatura de Larvas de Rhinella (Anura: Bufonidae) da Caatinga e da Floresta Atlântica. MSc thesis, Univ. de Sao Paulo (2010).

  • Skelly, D. K. & Freidenburg, L. K. Effects of beaver on the thermal biology of an amphibian. Ecol. Lett. 3, 483–486 (2000).

    Article 

    Google Scholar
     

  • Sos, T. Thermoconformity even in hot small temporary water bodies: a case study in yellow-bellied toad (Bombina v. variegata). Herpetol. Romanica 1, 1–11 (2007).


    Google Scholar
     

  • Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).

    Article 

    Google Scholar
     

  • Tracy, C. R., Christian, K. A., Betts, G. & Tracy, C. R. Body temperature and resistance to evaporative water loss in tropical Australian frogs. Comp. Biochem. Physiol. A 150, 102–108 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Turriago, J. L., Parra, C. A. & Bernal, M. H. Upper thermal tolerance in anuran embryos and tadpoles at constant and variable peak temperatures. Can. J. Zool. 93, 267–272 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Vidal, M. A., Novoa-Muñoz, F., Werner, E., Torres, C. & Nova, R. Modeling warming predicts a physiological threshold for the extinction of the living fossil frog Calyptocephalella gayi. J. Therm. Biol. 69, 110–117 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • von May, R. et al. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecol. Evol. 7, 3257–3267 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Wagener, C., Kruger, N. & Measey, J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J. Exp. Biol. 224, jeb233031 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H. & Wang, L. Thermal adaptation of the common giant toad (Bufo gargarizans) at different earlier developmental stages. J. Agric. Univ. Hebei 31, 79–83 (2008).

    MATH 

    Google Scholar
     

  • Wang, L. The effects of constant and variable thermal acclimation on thermal tolerance of the common giant toad tadpoles (Bufo gargarizans). Acta Ecol. Sin. 34, 1030–1034 (2014).

    MATH 

    Google Scholar
     

  • Wang, L.-Z. & Li, X.-C. Effect of temperature on incubation and thermal tolerance of the Chinese forest frog. Chin. J. Zool. 42, 121–127 (2007).

  • Wang, L. & Li, X.-C. Effects of constant thermal acclimation on thermal tolerance of the Chinese forest frog (Rana chensinensis). Acta Hydrobiol. Sin. 31, 748–750 (2007).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, L.-Z., Li, X.-C. & Sun, T. Preferred temperature, avoidance temperature and lethal temperature of tadpoles of the common giant toad (Bufo gargarizans) and the Chinese forest frog (Rana chensinensis). Chin. J. Zool. 40, 23–27 (2005).


    Google Scholar
     

  • Warburg, M. R. On the water economy of Israel amphibians: the anurans. Comp. Biochem. Physiol. A 40, 911–924 (1971).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Warburg, M. R. The water economy of Israel amphibians: the urodeles Triturus vittatus (Jenyns) and Salamandra salamandra (L.). Comp. Biochem. Physiol. A 40, 1055–1063 (1971).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Willhite, C. & Cupp, P. V. Daily rhythms of thermal tolerance in Rana clamitans (Anura: Ranidae) tadpoles. Comp. Biochem. Physiol. A 72, 255–257 (1982).

    Article 

    Google Scholar
     

  • Wu, C.-S. & Kam, Y.-C. Thermal tolerance and thermoregulation by Taiwanese rhacophorid tadpoles (Buergeria japonica) living in geothermal hot springs and streams. Herpetologica 61, 35–46 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Wu, Q.-H. & Hsieh, C.-H. Thermal Tolerance and Population Genetics of Hynobius fuca. Shei-Pa National Park Research Report (Chinese Culture University, 2016).

  • Xu, X. The Effect of Temperature on Body Temperature and Thermoregulation in Different Geographic Populations of Rana dybowskii. PhD thesis, Harbin Normal Univ. (2017).

  • Yandún Vela, M. C. Capacidad de Aclimatación en Renacuajos de dos Especies de Anuros: Rhinella marina (Bufonidae) y Gastrotheca riobambae (Hemiphractidae) y su Vulnerabilidad al Cambio Climático. BSc thesis, Pontificia Univ. Católica Del Ecuador (2017).

  • Young, V. K. H. & Gifford, M. E. Limited capacity for acclimation of thermal physiology in a salamander, Desmognathus brimleyorum. J. Comp. Physiol. B 183, 409–418 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Z., Dickstein, R., Magee, W. E. & Spotila, J. R. Heat shock response in the salamanders Plethodon jordani and Plethodon cinereus. J. Therm. Biol. 23, 259–265 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, R.-Q. & Liu, C.-T. Giant spiny-frog (Paa spinosa) from different populations differ in thermal preference but not in thermal tolerance. Aquat. Ecol. 44, 723–729 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Zweifel, R. G. Studies on the critical thermal maxima of salamanders. Ecology 38, 64–69 (1957).

    Article 
    MATH 

    Google Scholar
     

  • Pottier, P. et al. Data and code for ‘Vulnerability of amphibians to global warming’. Zenodo https://doi.org/10.5281/zenodo.14498866 (2024).

  • Drobniak, SM. et al. Research data – Vulnerability of amphibians to global warming, Jagiellonian University in Kraków, https://doi.org/10.57903/UJ/QGHLUD (2025).

  • Ivimey‐Cook, E. R. et al. Implementing code review in the scientific workflow: insights from ecology and evolutionary biology. J. Evol. Biol. 36, 1347–1356 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments