Thursday, September 25, 2025
No menu items!
HomeNatureVolcanic crisis reveals coupled magma system at Santorini and Kolumbo

Volcanic crisis reveals coupled magma system at Santorini and Kolumbo

  • Preine, J. et al. Hazardous explosive eruptions of a recharging multi-cyclic island arc caldera. Nat. Geosci. 17, 323–331 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karstens, J. et al. Cascading events during the 1650 tsunamigenic eruption of Kolumbo volcano. Nat. Commun. 14, 6606 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzo, A. L. et al. Kolumbo submarine volcano (Greece): an active window into the Aegean subduction system. Sci. Rep. 6, 28013 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klaver, M. et al. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc. Geochem. Geophys. Geosyst. 17, 3254–3273 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maccaferri, F., Rivalta, E., Passarelli, L. & Aoki, Y. On the mechanisms governing dike arrest: insight from the 2000 Miyakejima dike injection. Earth Planet. Sci. Lett. 434, 64–74 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, G. & Shearer, P. M. Spatiotemporal variations of focal mechanism and in situ V p / V s ratio during the 2018 Kīlauea eruption. Geophys. Res. Lett. 48, e2021GL094636 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517, 191–195 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ágústsdóttir, T. et al. Strike‐slip faulting during the 2014 Bárðarbunga‐Holuhraun dike intrusion, central Iceland. Geophys. Res. Lett. 43, 1495–1503 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Parks, M. et al. Deformation, seismicity, and monitoring response preceding and during the 2022 Fagradalsfjall eruption, Iceland. Bull. Volcanol. 85, 60 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Büyükakpınar, P. et al. Understanding the seismic signature of transtensional opening in the Reykjanes Peninsula Rift Zone, SW Iceland. J. Geophys. Res. Solid Earth 130, e2024JB029566 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Karstens, J. et al. Revised Minoan eruption volume as benchmark for large volcanic eruptions. Nat. Commun. 14, 2497 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biggs, J., Robertson, E. & Cashman, K. The lateral extent of volcanic interactions during unrest and eruption. Nat. Geosci. 9, 308–311 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parks, M. M. et al. From quiescence to unrest: 20 years of satellite geodetic measurements at Santorini volcano, Greece. J. Geophys. Res. Solid Earth 120, 1309–1328 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Schmid, F. et al. Heralds of future volcanism: swarms of microseismicity beneath the submarine Kolumbo volcano indicate opening of near‐vertical fractures exploited by ascending melts. Geochem. Geophys. Geosyst. 23, e2022GC010420 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hooft, E. E. E. et al. Seismic imaging of Santorini: subsurface constraints on caldera collapse and present-day magma recharge. Earth Planet. Sci. Lett. 514, 48–61 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McVey, B. G. et al. Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology 48, 231–235 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chrapkiewicz, K. et al. Magma chamber detected beneath an arc volcano with full‐waveform inversion of active‐source seismic data. Geochem. Geophys. Geosyst. 23, e2022GC010475 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Andinisari, R., Konstantinou, K. I. & Ranjan, P. Seismicity along the Santorini-Amorgos zone and its relationship with active tectonics and fluid distribution. Phys. Earth Planet. Inter. 312, 106660 (2021).

    Article 

    Google Scholar
     

  • Bohnhoff, M. et al. Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini–Amorgos zone. Tectonophysics 423, 17–33 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Crutchley, G. J. et al. Extensional faulting around Kolumbo Volcano, Aegean Sea—relationships between local stress fields, fault relay ramps, and volcanism. Tectonics 42, e2023TC007951 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Okal, E. A., Synolakis, C. E., Uslu, B., Kalligeris, N. & Voukouvalas, E. The 1956 earthquake and tsunami in Amorgos, Greece. Geophys. J. Int. 178, 1533–1554 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Leclerc, F. et al. Large seafloor rupture caused by the 1956 Amorgos tsunamigenic earthquake, Greece. Commun. Earth Environ. 5, 663 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Isken, M. et al. Qseek: a data-driven framework for automated earthquake detection, localization and characterization (Seismica 4, 2025).

  • Woods, J., Winder, T., White, R. S. & Brandsdóttir, B. Evolution of a lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: the 2014–15 Bárðarbunga–Holuhraun rifting event, Iceland. Earth Planet. Sci. Lett. 506, 53–63 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wright, T. J. et al. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat. Geosci. 5, 242–250 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eibl, E. P. S. et al. Tremor-rich shallow dyke formation followed by silent magma flow at Bárðarbunga in Iceland. Nat. Geosci. 10, 299–304 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cesca, S. et al. Massive earthquake swarm driven by magmatic intrusion at the Bransfield Strait, Antarctica. Commun. Earth Environ. 3, 89 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Davis, T., Rivalta, E. & Dahm, T. Critical fluid injection volumes for uncontrolled fracture ascent. Geophys. Res. Lett. 47, e2020GL087774 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Browning, J., Drymoni, K. & Gudmundsson, A. Forecasting magma-chamber rupture at Santorini volcano, Greece. Sci. Rep. 5, 15785 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hufstetler, R. S. et al. Seismic structure of the mid to upper crust at the Santorini‐Kolumbo magma system from joint earthquake and active source Vp‐Vs tomography. Geochem. Geophys. Geosyst. 26, e2024GC012022 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Autumn, K. R., Hooft, E. E. E. & Toomey, D. R. Exploring mid‐to‐lower crustal magma plumbing of Santorini and Kolumbo volcanoes using PmP tomography. Geochem. Geophys. Geosyst. 26, e2025GC012170 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Pègues, A. Histoire et phénomènes du volcan et des îles volcaniques de Santorin: suivis d’un coup d’oeil sur l’état moral et religieux de la Grèce moderne (Autorisation du Roi à l’Imprimerie Royale, 1842); https://doi.org/10.3931/E-RARA-72918.

  • Gonnermann, H. M. et al. Coupling at Mauna Loa and Kīlauea by stress transfer in an asthenospheric melt layer. Nat. Geosci. 5, 826–829 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reddin, E. et al. Magmatic connectivity among six Galápagos volcanoes revealed by satellite geodesy. Nat. Commun. 14, 6614 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, D. P., Pollitz, F. & Newhall, C. Earthquake–volcano interactions. Phys. Today 55, 41–47 (2002).

    Article 

    Google Scholar
     

  • Sulpizio, R. & Massaro, S. Influence of stress field changes on eruption initiation and dynamics: a review. Front. Earth Sci. 5, 18 (2017).

  • Patrick, M. R. et al. Cyclic lava effusion during the 2018 eruption of Kīlauea Volcano. Science 366, eaay9070 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shapiro, N. M. et al. Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer. Nat. Geosci. 10, 442–445 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parks, M. et al. 2023–2024 inflation-deflation cycles at Svartsengi and repeated dike injections and eruptions at the Sundhnúkur crater row, Reykjanes Peninsula, Iceland. Earth Planet. Sci. Lett. 658, 119324 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Del Fresno, C. et al. Magmatic plumbing and dynamic evolution of the 2021 La Palma eruption. Nat. Commun. 14, 358 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brothelande, E., Amelung, F., Yunjun, Z. & Wdowinski, S. Geodetic evidence for interconnectivity between Aira and Kirishima magmatic systems. Jpn. Sci. Rep. 8, 9811 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Segall, P. & Lu, S. Injection‐induced seismicity: poroelastic and earthquake nucleation effects. J. Geophys. Res. Solid Earth 120, 5082–5103 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fossen, H. & Rotevatn, A. Fault linkage and relay structures in extensional settings—a review. Earth Sci. Rev. 154, 14–28 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Carbone, D., Cannavò, F., Montagna, C. P. & Greco, F. Gas buffering of magma chamber contraction during persistent explosive activity at Mt. Etna volcano. Commun. Earth Environ. 4, 471 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Nobile, A. et al. Dike-fault interaction during the 2004 Dallol intrusion at the northern edge of the Erta Ale Ridge (Afar, Ethiopia). Geophys. Res. Lett. 39, L19305 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rivalta, E., Taisne, B., Bunger, A. P. & Katz, R. F. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cantner, K., Carey, S. & Nomikou, P. Integrated volcanologic and petrologic analysis of the 1650AD eruption of Kolumbo submarine volcano, Greece. J. Volcanol. Geotherm. Res. 269, 28–43 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nomikou, P. et al. Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Glob. Planet. Change 90–91, 135–151 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Schindelé, F. et al. A review of tsunamis generated by volcanoes (TGV) source mechanism, modelling, monitoring and warning systems. Pure Appl. Geophys. 181, 1745–1792 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Valentine, G. A., Graettinger, A. H. & Sonder, I. Explosion depths for phreatomagmatic eruptions. Geophys. Res. Lett. 41, 3045–3051 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Woollam, J. et al. SeisBench—a toolbox for machine learning in seismology. Seismol. Res. Lett. 93, 1695–1709 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, W. & Beroza, G. C. PhaseNet: a deep-neural-network-based seismic arrival time picking method. Geophys. J. Int. https://doi.org/10.1093/gji/ggy423 (2018).

    Article 

    Google Scholar
     

  • Papadimitriou, P. et al. The Santorini Volcanic Complex: a detailed multi-parameter seismological approach with emphasis on the 2011–2012 unrest period. J. Geodyn. 85, 32–57 (2015).

    Article 

    Google Scholar
     

  • Richards‐Dinger, K. B. & Shearer, P. M. Earthquake locations in southern California obtained using source‐specific station terms. J. Geophys. Res. 105, 10939–10960 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Heimann, S. et al. Grond – a probabilistic earthquake source inversion framework (GFZ Data Services, 2018); https://doi.org/10.5880/GFZ.2.1.2018.003.

  • Heimann, S. et al. A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems. Solid Earth 10, 1921–1935 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Kanamori, H. & Rivera, L. Source inversion of W phase: speeding up seismic tsunami warning. Geophys. J. Int. 175, 222–238 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Tong F., Seydoux L., Journeau C. & Soubestre J. covseisnet/covseisnet. Zenodo https://doi.org/10.5281/ZENODO.10990032 (2024).

  • Seydoux, L., Shapiro, N. M., De Rosny, J., Brenguier, F. & Landès, M. Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays. Geophys. J. Int. 204, 1430–1442 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Stehly, L., Delouche, E., Tomasetto, L. & Ranjan, P. Dynamic of seismic noise sources in the Mediterranean Sea: implication for monitoring using noise correlations. Comptes Rendus. Géoscience 356, 101–124 (2025).

    Article 

    Google Scholar
     

  • Soubestre, J. et al. Depth migration of seismovolcanic tremor sources below the Klyuchevskoy volcanic group (Kamchatka) determined from a network‐based analysis. Geophys. Res. Lett. 46, 8018–8030 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dach, R. et al. CODE final product series for the IGS. https://doi.org/10.48350/197025 (Astronomical Institute, University of Bern, 2024).

  • Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 87, 351–360 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Piter, A., Haghshenas Haghighi, M., FERN.Lab & Motagh, M. SARvey – survey with SAR. Zenodo https://doi.org/10.5281/ZENODO.12544130 (2025).

  • Zhao, F. & Mallorqui, J. J. A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection. IEEE Trans. Geosci. Remote Sens. 57, 8350–8361 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Boykov, Y. & Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1124–1137 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bagnardi, M. & Hooper, A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem. Geophys. Geosyst. 19, 2194–2211 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mogi, K. Relation between the eruption of various volcanoes and the deformation of the ground surface around them. Bull. Earthq. Res. Inst. 36, 99–134 (1958).


    Google Scholar
     

  • Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).

    Article 

    Google Scholar
     

  • National Observatory of Athens seismic network. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/HL (1975).

  • Aristotle University of Thessaloniki Seismological Network. International Federation of Digital Seismograph Networks https://doi.org/10.7914/SN/HT (1981).

  • Wiemer, S. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull. Seismol. Soc. Am. 90, 859–869 (2000).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments