Tuesday, April 15, 2025
No menu items!
HomeNatureUniversal photonic artificial intelligence acceleration

Universal photonic artificial intelligence acceleration

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

    Article 

    Google Scholar
     

  • He, K., Zhang, X., Ren, S. & Sun, J. in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016).

  • Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamerly, R., Bernstei, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).

    CAS 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, B. et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photonics 17, 1080–1088 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Becker, S., Englund, D. & Stiller, B. An optoacoustic field-programmable perceptron for recurrent neural networks. Nat. Commun. 15, 3020 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photonics 17, 723–730 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shalf, J. The future of computing beyond Moore’s Law. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20190061 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Schwierz, F. & Liou, J. J. in Proc. 2020 IEEE Latin America Electron Devices Conference (LAEDC) 1–4 (IEEE, 2020).

  • Leiserson, C. E. et al. There’s plenty of room at the Top: what will drive computer performance after Moore’s law? Science 368, eaam9744 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    Article 

    Google Scholar
     

  • Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaswani, A. et al. in Proc. Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) 5998–6008 (Curran Associates, 2017).

  • Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. in Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (eds Burstein, J., Doran, C. & Solorio, T.) 4171–4186 (Association for Computational Linguistics, 2019).

  • Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jouppi, N. P. et al. in Proc. 44th Annual International Symposium on Computer Architecture (ISCA ’17) 1–12 (ACM, 2017).

  • Peng, B., Hua, S., Su, Z., Xu, Y. & Shen, Y. in Proc. 2022 IEEE Photonics Conference (IPC) (IEEE, 2022).

  • Youngblood, N. Coherent photonic crossbar arrays for large-scale matrix-matrix multiplication. IEEE J. Sel. Top. Quantum Electron. 29, 1–11 (2023).

    Article 

    Google Scholar
     

  • Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Demirkiran, C. et al. An electro-photonic system for accelerating deep neural networks. ACM J. Emerg. Technol. Comput. Syst. 19, 1–31 (2023).

    Article 

    Google Scholar
     

  • Pintus, P. et al. Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. Nat. Photonics 19, 54–62 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacob, B. et al. in Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2704–2713 (IEEE, 2018).

  • Courbariaux, M., Bengio, Y. & David, J.-P. Training deep neural networks with low precision multiplications. Preprint at https://arxiv.org/abs/1412.7024 (2015).

  • Kirtas, M. et al. Mixed-precision quantization-aware training for photonic neural networks. Neural Comput. Appl. 35, 21361–21379 (2023).

    Article 

    Google Scholar
     

  • Basumallik, A. et al. Adaptive block floating-point for analog deep learning hardware. Preprint at https://arxiv.org/abs/2205.06287 (2022).

  • Giewont, K. et al. 300-mm monolithic silicon photonics foundry technology. IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

    Article 

    Google Scholar
     

  • Ghafarian, H. et al. A 9-bit, 45 mW, 0.05 mm2 source-series-terminated DAC driver with echo canceller in 22-nm CMOS for in-vehicle communication. IEEE Solid-State Circuits Lett. 4, 10–13 (2021).

    Article 

    Google Scholar
     

  • Yu, K. et al. in Proc. 2015 IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers https://doi.org/10.1109/isscc.2015.7063098 (IEEE, 2015).

  • McCreary, J. L. & Gray, P. R. All-MOS charge redistribution analog-to-digital conversion techniques. I. IEEE J. Solid-State Circuits 10, 371–379 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Jang, M. et al. Design techniques for energy-efficient analog-to-digital converters. IEEE Open J. Solid-State Circuits Soc. 3, 145–161 (2023).

    Article 

    Google Scholar
     

  • Ramkaj, A. T. et al. A 5-GS/s 158.6-mW 9.4-ENOB passive-sampling time-interleaved three-stage pipelined-SAR ADC with analog-digital corrections in 28-nm CMOS. IEEE J. Solid-State Circuits 55, 1553–1564 (2020).


    Google Scholar
     

  • Lagos, J. et al. A 10.1-ENOB, 6.2-fJ/conv.-step, 500-MS/s, ringamp-based pipelined-SAR ADC with background calibration and dynamic reference regulation in 16-nm CMOS. IEEE J. Solid-State Circuits 57, 1112–1124 (2022).

    Article 
    ADS 

    Google Scholar
     

  • de Lima, T. F. et al. Noise analysis of photonic modulator neurons. IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).

    Article 

    Google Scholar
     

  • Karpathy, A. nanoGPT. GitHub https://github.com/karpathy/nanoGPT (2023).

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parkhi, O. M., Vedaldi, A., Zisserman, A. & Jawahar, C. V. in Proc. 2012 IEEE Conference on Computer Vision and Pattern Recognition 3498–3505 (IEEE, 2012).

  • RELATED ARTICLES

    Most Popular

    Recent Comments