Thursday, May 22, 2025
No menu items!
HomeNatureUnexpected clustering pattern in dwarf galaxies challenges formation models

Unexpected clustering pattern in dwarf galaxies challenges formation models

  • Li, C. et al. The dependence of clustering on galaxy properties. Mon. Not. R. Astron. Soc. 368, 21–36 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Zehavi, I. et al. Galaxy clustering in the completed SDSS redshift survey: the dependence on color and luminosity. Astrophys. J. 736, 59 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Gao, L., Springel, V. & White, S. D. M. The age dependence of halo clustering. Mon. Not. R. Astron. Soc. 363, L66–L70 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Amorisco, N. C. & Loeb, A. Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population. Mon. Not. R. Astron. Soc. 459, L51–L55 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Di Cintio, A. et al. NIHAO—XI. Formation of ultra-diffuse galaxies by outflows. Mon. Not. R. Astron. Soc. 466, L1–L6 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Dokkum, P. et al. A trail of dark-matter-free galaxies from a bullet-dwarf collision. Nature 605, 435–439 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanton, M. R. et al. New York University Value-Added Galaxy Catalog: a galaxy catalog based on new public surveys. Astron. J. 129, 2562–2578 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Yang, X. et al. Galaxy groups in the SDSS DR4. I. The catalog and basic properties. Astrophys. J. 671, 153–170 (2007).

    Article 
    ADS 

    Google Scholar
     

  • van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma Cluster. Astrophys. J. 798, L45 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Mo, H. J. & White, S. D. M. An analytic model for the spatial clustering of dark matter haloes. Mon. Not. R. Astron. Soc. 282, 347–361 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Hu, H.-J. et al. Global dynamic scaling relations of H i-rich ultra-diffuse galaxies. Astrophys. J. Lett. 947, L9 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kravtsov, A. V., Vikhlinin, A. A. & Meshcheryakov, A. V. Stellar mass–halo mass relation and star formation efficiency in high-mass halos. Astron. Lett. 44, 8–34 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tinker, J. L. et al. The large-scale bias of dark matter halos: numerical calibration and model tests. Astrophys. J. 724, 878–886 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Wang, E. et al. The dearth of differences between central and satellite galaxies. II. Comparison of observations with L-GALAXIES and EAGLE in star formation quenching. Astrophys. J. 864, 51 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. ELUCID—exploring the local Universe with reconstructed initial density field. III. Constrained simulation in the SDSS volume. Astrophys. J. 831, 164 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wechsler, R. H., Zentner, A. R., Bullock, J. S., Kravtsov, A. V. & Allgood, B. The dependence of halo clustering on halo formation history, concentration, and occupation. Astrophys. J. 652, 71–84 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jing, Y. P., Suto, Y. & Mo, H. J. The dependence of dark halo clustering on formation epoch and concentration parameter. Astrophys. J. 657, 664–668 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Bett, P. et al. The spin and shape of dark matter haloes in the Millennium simulation of a Λ cold dark matter universe. Mon. Not. R. Astron. Soc. 376, 215–232 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Gao, L., White, S. D. M., Jenkins, A., Stoehr, F. & Springel, V. The subhalo populations of ΛCDM dark haloes. Mon. Not. R. Astron. Soc. 355, 819–834 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Sato-Polito, G., Montero-Dorta, A. D., Abramo, L. R., Prada, F. & Klypin, A. The dependence of halo bias on age, concentration, and spin. Mon. Not. R. Astron. Soc. 487, 1570–1579 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, H., Mo, H. J. & Jing, Y. P. The distribution of ejected subhaloes and its implication for halo assembly bias. Mon. Not. R. Astron. Soc. 396, 2249–2256 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H., Mo, H. J., Yang, X., Jing, Y. P. & Lin, W. P. ELUCID—exploring the local Universe with the reconstructed initial density field. I. Hamiltonian Markov chain Monte Carlo method with particle mesh dynamics. Astrophys. J. 794, 94 (2014).

    Article 
    ADS 

    Google Scholar
     

  • van Dokkum, P. et al. A high stellar velocity dispersion and ~100 globular clusters for the ultra-diffuse galaxy Dragonfly 44. Astrophys. J. Lett. 828, L6 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Safarzadeh, M. & Scannapieco, E. The fate of gas-rich satellites in clusters. Astrophys. J. 850, 99 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, F. et al. Formation of ultra-diffuse galaxies in the field and in galaxy groups. Mon. Not. R. Astron. Soc. 487, 5272–5290 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liao, S. et al. Ultra-diffuse galaxies in the Auriga simulations. Mon. Not. R. Astron. Soc. 490, 5182–5195 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Benítez-Llambay, A. et al. Dwarf galaxies and the cosmic web. Astrophys. J. 763, L41 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rong, Y. et al. A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations. Mon. Not. R. Astron. Soc. 470, 4231–4240 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Benavides, J. A. et al. Origin and evolution of ultradiffuse galaxies in different environments. Mon. Not. R. Astron. Soc. 522, 1033–1048 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mo, H. J., Mao, S. & White, S. D. M. The formation of galactic discs. Mon. Not. R. Astron. Soc. 295, 319–336 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Chan, T. K. et al. The origin of ultra diffuse galaxies: stellar feedback and quenching. Mon. Not. R. Astron. Soc. 478, 906–925 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Q. et al. From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology. Mon. Not. R. Astron. Soc. 413, 101–131 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ayromlou, M. et al. Comparing galaxy formation in the L-GALAXIES semi-analytical model and the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 502, 1051–1069 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rep. 730, 1–57 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Kaplinghat, M., Ren, T. & Yu, H.-B. Dark matter cores and cusps in spiral galaxies and their explanations. J. Cosmol. Astropart. Phys. 2020, 027 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, D., Yu, H.-B. & An, H. Self-interacting dark matter and the origin of ultradiffuse galaxies NGC1052-DF2 and -DF4. Phys. Rev. Lett. 125, 111105 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Yu, H.-B., Yang, D. & An, H. Self-interacting dark matter interpretation of Crater II. Astrophys. J. 968, L13 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Rocha, M. et al. Cosmological simulations with self-interacting dark matter—I. Constant-density cores and substructure. Mon. Not. R. Astron. Soc. 430, 81–104 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, F. et al. A semi-analytic study of self-interacting dark-matter haloes with baryons. Mon. Not. R. Astron. Soc. 521, 4630–4644 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kong, D., Kaplinghat, M., Yu, H.-B., Fraternali, F. & Mancera Piña, P. E. The odd dark matter halos of isolated gas-rich ultradiffuse galaxies. Astrophys. J. 936, 166 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mancera Piña, P. E., Golini, G., Trujillo, I. & Montes, M. Exploring the nature of dark matter with the extreme galaxy AGC 114905. Astron. Astrophys. 689, A344 (2024).

    Article 

    Google Scholar
     

  • Burkert, A. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25–L28 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Huang, K.-H. et al. Relations between the sizes of galaxies and their dark matter halos at redshifts 0 < z < 3. Astrophys. J. 838, 6 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y., Mo, H. & Wang, H. A two-phase model of galaxy formation—II. The size–mass relation of dynamically hot galaxies. Mon. Not. R. Astron. Soc. 532, 4340–4349 (2024).

    Article 

    Google Scholar
     

  • Shi, Y. et al. A cuspy dark matter halo. Astrophys. J. 909, 20 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Correa, C. A. et al. TangoSIDM Project: is the stellar mass Tully–Fisher relation consistent with SIDM?. Mon. Not. R. Astron. Soc. 536, 3338–3356 (2025).

    Article 

    Google Scholar
     

  • Yang, X., Mo, H. J., van den Bosch, F. C. & Jing, Y. P. A halo-based galaxy group finder: calibration and application to the 2dFGRS. Mon. Not. R. Astron. Soc. 356, 1293–1307 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koda, J., Yagi, M., Yamanoi, H. & Komiyama, Y. Approximately a thousand ultra-diffuse galaxies in the Coma Cluster. Astrophys. J. Lett. 807, L2 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Davis, M. & Peebles, P. J. E. A survey of galaxy redshifts. V. The two-point position and velocity correlations. Astrophys. J. 267, 465–482 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Hosts and triggers of AGNs in the local Universe. Astron. Astrophys. 650, A155 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Trusov, S. et al. The two-point correlation function covariance with fewer mocks. Mon. Not. R. Astron. Soc. 527, 9048–9060 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Strauss, M. A. et al. Spectroscopic target selection in the Sloan Digital Sky Survey: the main galaxy sample. Astron. J. 124, 1810–1824 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Moster, B. P., Somerville, R. S., Newman, J. A. & Rix, H.-W. A cosmic variance cookbook. Astrophys. J. 731, 113 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. ELUCID. VI. Cosmic variance of the galaxy distribution in the local Universe. Astrophys. J. 872, 180 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giovanelli, R. et al. The Arecibo Legacy Fast ALFA Survey. I. Science goals, survey design, and strategy. Astron. J. 130, 2598–2612 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haynes, M. P. et al. The Arecibo Legacy Fast ALFA survey: the ALFALFA extragalactic H i source catalog. Astrophys. J. 861, 49 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Guo, Q. et al. Further evidence for a population of dark-matter-deficient dwarf galaxies. Nat. Astron. 4, 246–251 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Marchesini, D. et al. Hα rotation curves: the soft core question. Astrophys. J. 575, 801–813 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Rong, Y. et al. Gas-rich ultra-diffuse galaxies are originated from high specific angular momentum. Preprint at https://arxiv.org/abs/2404.00555 (2024).

  • Wang, J. et al. Universal structure of dark matter haloes over a mass range of 20 orders of magnitude. Nature 585, 39–42 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Starkenburg, T. K. et al. On the origin of star-gas counterrotation in low-mass galaxies. Astrophys. J. 878, 143 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gault, L. et al. VLA imaging of H i-bearing ultra-diffuse galaxies from the ALFALFA survey. Astrophys. J. 909, 19 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hahn, O., Porciani, C., Carollo, C. M. & Dekel, A. Properties of dark matter haloes in clusters, filaments, sheets and voids. Mon. Not. R. Astron. Soc. 375, 489–499 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Nelson, D. et al. The IllustrisTNG simulations: public data release. Comput. Astrophys. Cosmol. 6, 2 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y., Mo, H. J. & Gao, L. On halo formation times and assembly bias. Mon. Not. R. Astron. Soc. 389, 1419–1426 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bullock, J. S. et al. A universal angular momentum profile for galactic halos. Astrophys. J. 555, 240 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hearin, A. P. & Watson, D. F. The dark side of galaxy colour. Mon. Not. R. Astron. Soc. 435, 1313–1324 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Behroozi, P., Wechsler, R. H., Hearin, A. P. & Conroy, C. UniverseMachine: the correlation between galaxy growth and dark matter halo assembly from z = 0–10. Mon. Not. R. Astron. Soc. 488, 3143–3194 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Silk, J. Ultra-diffuse galaxies without dark matter. Mon. Not. R. Astron. Soc. 488, L24–L28 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yozin, C. & Bekki, K. The quenching and survival of ultra diffuse galaxies in the Coma Cluster. Mon. Not. R. Astron. Soc. 452, 937–943 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Relating the structure of dark matter halos to their assembly and environment. Astrophys. J. 899, 81 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Relatores, N. C. et al. The dark matter distributions in low-mass disk galaxies. II. The inner density profiles. Astrophys. J. 887, 94 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements—chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Henriques, B. M. B. et al. Galaxy formation in the Planck cosmology—I. Matching the observed evolution of star formation rates, colours and stellar masses. Mon. Not. R. Astron. Soc. 451, 2663–2680 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kaplinghat, M., Tulin, S. & Yu, H.-B. Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters. Phys. Rev. Lett. 116, 041302 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mo, H. J. & Mao, S. The Tully–Fisher relation and its implications for the halo density profile and self-interacting dark matter. Mon. Not. R. Astron. Soc. 318, 163–172 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fischer, M. S. et al. Cosmological and idealized simulations of dark matter haloes with velocity-dependent, rare and frequent self-interactions. Mon. Not. R. Astron. Soc. 529, 2327–2348 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments