Saturday, May 31, 2025
No menu items!
HomeNatureUnconventional solitonic high-temperature superfluorescence from perovskites

Unconventional solitonic high-temperature superfluorescence from perovskites

  • Zurek, W. H., Habib, S. & Paz, J. P. Coherent states via decoherence. Phys. Rev. Lett. 70, 1187–1190 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blach, D. D. et al. Superradiance and exciton delocalization in perovskite quantum dot superlattices. Nano Lett. 22, 7811–7818 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobirey, L. et al. Observation of superfluidity in a strongly correlated two-dimensional Fermi gas. Science 372, 844–846 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitaevskii, L. & Stringari, S. Thermal vs quantum decoherence in double well trapped Bose-Einstein condensates. Phys. Rev. Lett. 87, 180402 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Palma, G. M., Suominen, K.-a. & Ekert, A. Quantum computers and dissipation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 452, 567–584 (1996).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Reina, J. H., Quiroga, L. & Johnson, N. F. Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A. & Arndt, M. Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Klembt, S., Stepanov, P., Klein, T., Minguzzi, A. & Richard, M. Thermal decoherence of a nonequilibrium polariton fluid. Phys. Rev. Lett. 120, 035301 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaanen, J. et al. Towards a complete theory of high Tc. Nat. Phys. 2, 138–143 (2006).

    Article 

    Google Scholar
     

  • Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nasu, M., Kawamura, K., Yoshida, T., Ishihara, J. & Miyajima, K. Influences of quantum fluctuation on superfluorescent spectra observed by single-shot measurement for semiconductor quantum dots. Appl. Phys. Express 13, 062005 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haake, F., King, H., Schröder, G., Haus, J. & Glauber, R. Fluctuations in superfluorescence. Phys. Rev. A 20, 2047–2063 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Okada, J., Ikeda, K. & Matsuoka, M. Streak camera investigation of superradiance development. Opt. Commun. 27, 321–323 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Malcuit, M. S., Maki, J. J., Simkin, D. J. & Boyd, R. W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59, 1189–1192 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis: Forecasting and Control (Wiley, 2015).

  • Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagai, M. et al. Longitudinal optical phonons modified by organic molecular cation motions in organic-inorganic hybrid perovskites. Phys. Rev. Lett. 121, 145506 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guzelturk, B. et al. Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling. Adv. Mater. 30, 1704737 (2018).

    Article 

    Google Scholar
     

  • Cinquanta, E. et al. Ultrafast THz probe of photoinduced polarons in lead-halide perovskites. Phys. Rev. Lett. 122, 166601 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, J., Vasenko, A. S., Long, R. & Prezhdo, O. V. Halide composition controls electron–hole recombination in cesium–lead halide perovskite quantum dots: a time domain ab initio study. J. Phys. Chem. Lett. 9, 1872–1879 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boehme, S. C. et al. Phonon-mediated and weakly size-dependent electron and hole cooling in CsPbBr3 nanocrystals revealed by atomistic simulations and ultrafast spectroscopy. Nano Lett. 20, 1819–1829 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Masharin, M. A. et al. Room-temperature polaron-mediated polariton nonlinearity in MAPbBr3 perovskites. ACS Photon. 10, 691–698 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Menéndez‐Proupin, E., Beltrán Ríos, C. L. & Wahnón, P. Nonhydrogenic exciton spectrum in perovskite CH3NH3PbI3. Phys. Status Solidi Rapid Res. Lett. 9, 559–563 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Monahan, D. M. et al. Room-temperature coherent optical phonon in 2D electronic spectra of CH3NH3PbI3 perovskite as a possible cooling bottleneck. J. Phys. Chem. Lett. 8, 3211–3215 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gogolin, A. O. & Ioselevich, A. S. Quantum polaron. Pisma Zh. Eksp. Teor. Fiz. 53, 456–460 (1991).


    Google Scholar
     

  • Gutfreund, H. & Weger, M. Temperature dependence of the metallic conductivity of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 16, 1753–1755 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Friedberg, R. & Lee, T. D. Fermion-field nontopological solitons. Phys. Rev. D 15, 1694–1711 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Friedberg, R., Lee, T. & Sirlin, A. Class of scalar-field soliton solutions in three space dimensions. Phys. Rev. D 13, 2739–2761 (1976).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Yazdani, N. et al. Coupling to octahedral tilts in halide perovskite nanocrystals induces phonon-mediated attractive interactions between excitons. Nat. Phys. 20, 47–53 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mølmer, K., Castin, Y. & Dalibard, J. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524–538 (1993).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments