Wednesday, May 14, 2025
No menu items!
HomeNatureUnconventional domain tessellations in moiré-of-moiré lattices

Unconventional domain tessellations in moiré-of-moiré lattices

  • Frenkel, Y. I. & Kontorova, T. The model of dislocation in solid body. Zh. Eksp. Teor. Fiz. 8, 1340–1348 (1938).


    Google Scholar
     

  • McMillan, W. L. Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition. Phys. Rev. B 14, 1496–1502 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 18 (1980).

    MathSciNet 

    Google Scholar
     

  • Bak, P. Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Prog. Phys. 45, 587 (1982).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, F.-T. & Cheong, S.-W. Aperiodic topological order in the domain configurations of functional materials. Nat. Rev. Mater. 2, 17004 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Engelke, R. et al. Topological nature of dislocation networks in two-dimensional moiré materials. Phys. Rev. B 107, 125413 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, Z., Carr, S., Massatt, D., Luskin, M. & Kaxiras, E. Twisted trilayer graphene: a precisely tunable platform for correlated electrons. Phys. Rev. Lett. 125, 116404 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Correlated insulating states and transport signature of superconductivity in twisted trilayer graphene superlattices. Phys. Rev. Lett. 127, 166802 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, J., Chittari, B. L. & Jung, J. Stacking and gate-tunable topological flat bands, gaps, and anisotropic strip patterns in twisted trilayer graphene. Phys. Rev. B 104, 045413 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Symmetry breaking and anomalous conductivity in a double-moiré superlattice. Nano Lett. 22, 6215–6222 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, X., Li, C., Su, K. & Ni, J. Energetic stability and spatial inhomogeneity in the local electronic structure of relaxed twisted trilayer graphene. Phys. Rev. B 106, 075423 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Devakul, T. et al. Magic-angle helical trilayer graphene. Sci. Adv. 9, eadi6063 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakatsuji, N., Kawakami, T. & Koshino, M. Multiscale lattice relaxation in general twisted trilayer graphenes. Phys. Rev. X 13, 041007 (2023).

    CAS 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Y., Guerci, D. & Mora, C. Supermoiré low-energy effective theory of twisted trilayer graphene. Phys. Rev. B 107, 125423 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Popov, F. K. & Tarnopolsky, G. Magic angles in equal-twist trilayer graphene. Phys. Rev. B 108, L081124 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meng, H., Zhan, Z. & Yuan, S. Commensurate and incommensurate double moiré interference in twisted trilayer graphene. Phys. Rev. B 107, 035109 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, C. Calculation of charge density wave phase diagram by interacting eigenmodes method. J. Phys. Condens. Matter 34, 315401 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, C. & Son, Y.-W. Condensation of preformed charge density waves in kagome metals. Nat. Commun. 14, 7309 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Domino-like stacking order switching in twisted monolayer–multilayer graphene. Nat. Mater. 21, 621–626 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lipson, H. S. & Stokes, A. The structure of graphite. Proc. R. Soc. Lond. A. Math. Phys. Sci. 181, 101–105 (1942).

    ADS 
    CAS 

    Google Scholar
     

  • Boehm, H. P. & Coughlin, R. W. Enthalpy difference of hexagonal and rhombohedral graphite. Carbon 2, 1–6 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nery, J. P., Calandra, M. & Mauri, F. Ab-initio energetics of graphite and multilayer graphene: stability of Bernal versus rhombohedral stacking. 2D Mater. 8, 035006 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kaliteevski, M. A., Enaldiev, V. & Fal’ko, V. I. Twirling and spontaneous symmetry breaking of domain wall networks in lattice-reconstructed heterostructures of two-dimensional materials. Nano Lett. 23, 8875–8880 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, C., Chang, C.-P., Huang, Y.-C., Chen, R.-B. & Lin, M. Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys. Rev. B 73, 144427 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, I., Blanter, Y. M. & Morpurgo, A. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • San-Jose, P. & Prada, E. Helical networks in twisted bilayer graphene under interlayer bias. Phys. Rev. B 88, 121408 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsim, B., Nam, N. N. T. & Koshino, M. Perfect one-dimensional chiral states in biased twisted bilayer graphene. Phys. Rev. B 101, 125409 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zou, K., Zhang, F., Clapp, C., MacDonald, A. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sau, J. D., Lutchyn, R. M., Tewari, S. & Das Sarma, S. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, L. et al. Twinning and twisting of tri- and bilayer graphene. Nano Lett. 12, 1609–1615 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, S. H., Schnitzer, N., Brown, L., Park, J. & Hovden, R. Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction. Phys. Rev. Mater. 3, 064003 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, J. et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 13, 3262–3268 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Trambly de Laissardière, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • OpenCollab. ARPACK-ng: high-performance eigenvalue solver for large sparse matrices. GitHub https://github.com/opencollab/arpack-ng (2023).

  • Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. in Modern Software Tools for Scientific Computing (eds Arge, E., Bruaset, A. M. & Langtangen, H. P.) 163–202 (Springer, 1997).

  • RELATED ARTICLES

    Most Popular

    Recent Comments