Thursday, May 15, 2025
No menu items!
HomeNatureUltrahigh-pressure crystallographic passage towards metallic hydrogen

Ultrahigh-pressure crystallographic passage towards metallic hydrogen

  • Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 3, 473–476 (2007).

    Article 
    CAS 

    Google Scholar
     

  • McMahon, J. M., Morales, M. A., Pierleoni, C. & Ceperley, D. M. The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 84, 1607–1653 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Monserrat, B. et al. Structure and metallicity of phase V of hydrogen. Phys. Rev. Lett. 120, 255701 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Monacelli, L., Casula, M., Nakano, K., Sorella, S. & Mauri, F. Quantum phase diagram of high-pressure hydrogen. Nat. Phys. 19, 845–850 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hazen, R. M., Mao, H. K., Finger, L. W. & Hemley, R. J. Single-crystal x-ray diffraction of n-H2 at high pressure. Phys. Rev. B 36, 3944–3947 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ginzburg, V. L. Nobel Lecture: on superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century. Rev. Mod. Phys. 76, 981–998 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor?. Phys. Rev. Lett. 21, 1748–1749 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764 (1935).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mao, H. K. et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals. Science 239, 1131–1134 (1988).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eremets, M. I., Drozdov, A. P., Kong, P. P. & Wang, H. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246–1249 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Goncharenko, I. & Loubeyre, P. Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium. Nature 435, 1206–1209 (2005).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Akahama, Y. et al. Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B 82, 060101 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ji, C. et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 573, 558–562 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Mao, H.-k. & Hemley, R. J. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 66, 671–692 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eremets, M. I. & Troyan, I. A. Conductive dense hydrogen. Nat. Mater. 10, 927–931 (2011).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Howie, R. T., Guillaume, C. L., Scheler, T., Goncharov, A. F. & Gregoryanz, E. Mixed molecular and atomic phase of dense hydrogen. Phys. Rev. Lett. 108, 125501 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Howie, R. T., Scheler, T., Guillaume, C. L. & Gregoryanz, E. Proton tunneling in phase IV of hydrogen and deuterium. Phys. Rev. B 86, 214104 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529, 63–67 (2016).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Mazin, I. I., Hemley, R. J., Goncharov, A. F., Hanfland, M. & Mao, H.-k Quantum and classical orientational ordering in solid hydrogen. Phys. Rev. Lett. 78, 1066–1069 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nagara, H. & Nakamura, T. Stable phases of solid hydrogen at megabar pressures and at zero temperature. Phys. Rev. Lett. 68, 2468–2471 (1992).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Natoli, V., Martin, R. M. & Ceperley, D. Crystal structure of molecular hydrogen at high pressure. Phys. Rev. Lett. 74, 1601–1604 (1995).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Johnson, K. A. & Ashcroft, N. W. Structure and bandgap closure in dense hydrogen. Nature 403, 632–635 (2000).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Kitamura, H., Tsuneyuki, S., Ogitsu, T. & Miyake, T. Quantum distribution of protons in solid molecular hydrogen at megabar pressures. Nature 404, 259–262 (2000).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, H., Zhu, L., Cui, W. & Ma, Y. Room-temperature structures of solid hydrogen at high pressures. J. Chem. Phys. 137, 074501 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pickard, C. J., Martinez-Canales, M. & Needs, R. J. Density functional theory study of phase IV of solid hydrogen. Phys. Rev. B 85, 214114 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Niu, H. et al. Stable solid molecular hydrogen above 900 K from a machine-learned potential trained with diffusion quantum Monte Carlo. Phys. Rev. Lett. 130, 076102 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Babaev, E., Sudbø, A. & Ashcroft, N. W. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature 431, 666–668 (2004).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Bonev, S. A., Schwegler, E., Ogitsu, T. & Galli, G. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature 431, 669 (2004).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ji, C. et al. Crystallography of low Z material at ultrahigh pressure: case study on solid hydrogen. Matter Radiat. Extremes 5, 038401 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bjorling, A. et al. Ptychographic characterization of a coherent nanofocused X-ray beam. Opt. Express 28, 5069–5076 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Carbone, D. et al. Design and performance of a dedicated coherent X-ray scanning diffraction instrument at beamline NanoMAX of MAX IV. J. Synchrotron Radiat. 29, 876–887 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Johansson, U. et al. NanoMAX: the hard X-ray nanoprobe beamline at the MAX IV Laboratory. J. Synchrotron Radiat. 28, 1935–1947 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Glazyrin, K. et al. Sub-micrometer focusing setup for high-pressure crystallography at the Extreme Conditions beamline at PETRA III. J. Synchrotron Radiat. 29, 654–663 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Goncharov, A. F., Chuvashova, I., Ji, C. & Mao, H. K. Intermolecular coupling and fluxional behavior of hydrogen in phase IV. Proc. Natl Acad. Sci. USA 116, 25512–25515 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Eremets, M. I., Troyan, I. A., Lerch, P. & Drozdov, A. Infrared study of hydrogen up to 310 GPa at room temperature. High Pressure Res. 33, 377–380 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loubeyre, P., Occelli, F. & Dumas, P. Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K. Phys. Rev. B 87, 134101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zha, C.-S., Liu, Z., Ahart, M., Boehler, R. & Hemley, R. J. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy. Phys. Rev. Lett. 110, 217402 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, H. & Ma, Y. Proton or deuteron transfer in phase IV of solid hydrogen and deuterium. Phys. Rev. Lett. 110, 025903 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Magdău, I. B. & Ackland, G. J. Identification of high-pressure phases III and IV in hydrogen: Simulating Raman spectra using molecular dynamics. Phys. Rev. B 87, 174110 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Geneste, G., Torrent, M., Bottin, F. & Loubeyre, P. Strong isotope effect in phase II of dense solid hydrogen and deuterium. Phys. Rev. Lett. 109, 155303 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ackland, G. J. & Loveday, J. S. Structures of solid hydrogen at 300 K. Phys. Rev. B 101 094104 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Monserrat, B., Needs, R. J., Gregoryanz, E. & Pickard, C. J. Hexagonal structure of phase III of solid hydrogen. Phys. Rev. B 94, 134101 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Holland, T. J. B. & Redfern, S. A. T. Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag. 61, 65–77 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ji, C., Li, B., Yang, W. & Mao, H.-k. Crystallographic studies of ultra-dense solid hydrogen. Chin. J. High Press. Phys. 34, 020101 (2020).


    Google Scholar
     

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shiga, M., Tachikawa, M. & Miura, S. Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics. Chem. Phys. Lett. 332, 396–402 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ji, C. Raw SCXRD data of ‘Ultrahigh Pressure Crystallographic Passage Toward Metallic Hydrogen’ v.1.0. Zenodo. https://doi.org/10.21203/rs.3.rs-5080559/v1 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments