Bhugra, H. & Piazza, G. (eds) Piezoelectric MEMS Resonators (Springer, 2017).
Zhang, S. et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – A review. Prog. Mater. Sci. 68, 1â66 (2015).
Shung, K. K. & Zippuro, M. Ultrasonic transducers and arrays. IEEE Eng. Med. Biol. Mag. 15, 20â30 (1996).
Qiu, C. et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577, 350â354 (2020).
Yang, M.-M. et al. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 584, 377â381 (2020).
Trolier-Mckinstry, S. & Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7â17 (2004).
Liu, W. & Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).
Liu, H. et al. Giant piezoelectricity in oxide thin films with nanopillar structure. Science 369, 292â297 (2020).
Jaffe, B., Cook, W. R. & Jaffe, H. L. Piezoelectric Ceramics (Academic Press, 1971).
Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).
Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).
Li, J. et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science 380, 87â93 (2023).
Li, F. et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264â268 (2019).
Lu, H. et al. Electrically induced cancellation and inversion of piezoelectricity in ferroelectric Hf0.5Zr0.5O2. Nat. Commun. 15, 860 (2024).
Cheema, S. S. et al. Giant energy storage and power density negative capacitance superlattices. Nature 629, 803â809 (2024).
Eom, C.-B. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007â1017 (2012).
Kighelman, Z., Damjanovic, D., Cantoni, M. & Setter, N. Properties of ferroelectric PbTiO3 thin films. J. Appl. Phys. 91, 1495â1501 (2002).
Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719â1722 (2003).
Park, K.-I. et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939â4943 (2010).
Damjanovic, D. Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 8 (2009).
Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977â980 (2009).
Li, F. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349â354 (2018).
Nguyen, M. D., Houwman, E. P. & Rijnders, G. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates. Sci Rep. 7, 12915 (2017).
Kim, B. Y. et al. Highâperformance (Na0.5K0.5)NbO3 thin film piezoelectric energy harvester. J. Am. Ceram. Soc. 98, 119â124 (2014).
Lv, P. et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 97, 107182 (2022).
Zhang, S., Zheng, F., Jin, C. & Fei, W. Thickness-dependent monoclinic phases and piezoelectric properties observed in polycrystalline (Pb0.94La0.04)(Zr0.60Ti0.40)O3 thin films. J. Phys. Chem. C 119, 17487â17492 (2015).
Nguyen, M. D., Houwman, E. P., Dekkers, M. & Rijnders, G. Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically aligned columnar grains. ACS Appl. Mater. Interfaces 9, 9849â9861 (2017).
Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).
Liu, Q. et al. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ. Sci. 11, 3531â3539 (2018).
Waqar, M. et al. Origin of giant electric-field-induced strain in faulted alkali niobate films. Nat. Commun. 13, 3922 (2022).
Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977).
Randall, C. A., Fan, Z., Reaney, I., Chen, L. Q. & TrolierâMcKinstry, S. Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J. Am. Ceram. Soc. 104, 3775â3810 (2021).
Shirane, G., Sawaguchi, E. & Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 84, 476â481 (1951).
Shirane, G. Ferroelectricity and antiferroelectricity in ceramic PbZrO3 containing Ba or Sr. Phys. Rev. 86, 219â227 (1952).
Yao, Y. et al. Ferrielectricity in the archetypal antiferroelectric, PbZrO3. Adv. Mater. 35, 2206541 (2023).
Mishra, S. K., Choudhury, N., Chaplot, S. L., Krishna, P. S. R. & Mittal, R. Competing antiferroelectric and ferroelectric interactions in NaNbO3: neutron diffraction and theoretical studies. Phys. Rev. B 76, 024110 (2007).
Shen, Z. X., Wang, X. B., Kuok, M. H. & Tang, S. H. Raman scattering investigations of the antiferroelectricâferroelectric phase. J. Raman Spectrosc. 29, 379â384 (1998).
Jiang, L., Mitchell, D. C., Dmowski, W. & Egami, T. Local structure of NaNbO3: a neutron scattering study. Phys. Rev. B 88, 014105 (2013).
Yoneda, Y., Fu, D. & Kohara, S. Local structure analysis of NaNbO3. J. Phys. Conf. Ser. 502, 012022 (2014).
Darlington, C. N. W. & Megaw, H. D. The low-temperature phase transition of sodium niohate and the structure of the low-temperature phase, N. Acta Cryst. B29, 2171â2185 (1973).
Lanfredi, S., Lente, M. H. & Eiras, J. A. Phase transition at low temperature in NaNbO3 ceramic. Appl. Phys. Lett. 80, 2731â2733 (2002).
Yang, P., Liu, H., Chen, Z., Chen, L. & Wang, J. Unit-cell determination of epitaxial thin films based on reciprocal-space vectors by high-resolution X-ray diffractometry. J. Appl. Cryst. 47, 402â413 (2014).
Megaw, H. D. The seven phases of sodium niobate. Ferroelectrics 7, 87â89 (1974).
Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91â94 (2004).
Park, D.-S. et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 375, 653â657 (2022).
Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021).
Ren, M. Q. et al. Analytical possibilities of highly focused ion beams in biomedical field. Nucl. Instrum. Methods Phys. Res. B 406, 15â24 (2017).
Mayer, M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conf. Proc. 475, 541â544 (1999).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Blaha, P. et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat., 2021).
Ahmed, S. J. et al. BerryPI: a software for studying polarization of crystalline solids with WIEN2k density functional all-electron package. Comput. Phys. Commun. 184, 647â651 (2013).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272â1276 (2011).
Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835â1844 (2008).
Hu, H.-L. & Chen, L.-Q. Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81, 492â500 (1998).
Yang, T., Wang, B., Hu, J.-M. & Chen, L.-Q. Domain dynamics under ultrafast electric-field pulses. Phys. Rev. Lett. 124, 107601 (2020).
King-Smith, R. D. & Vanderbilt, D. First-principles investigation of ferroelectricity in perovskite compounds. Phys. Rev. B 49, 5828â5844 (1994).
Diéguez, O., Rabe, K. M. & Vanderbilt, D. First-principles study of epitaxial strain in perovskites. Phys. Rev. B 72, 144101 (2005).
Mishra, S., Choudhury, N., Chaplot, S., Krishna, P. & Mittal, R. Competing antiferroelectric and ferroelectric interactions in NaNbO3: neutron diffraction and theoretical studies. Phys. Rev. B 76, 024110 (2007).
Tomeno, I., Tsunoda, Y., Oka, K., Matsuura, M. & Nishi, M. Lattice dynamics of cubic NaNbO3: an inelastic neutron scattering study. Phys. Rev. B 80, 104101 (2009).
Zhang, M.-H. et al. Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3. Acta Mater. 200, 127â135 (2020).
Zhang, M.-H. et al. Revealing the mechanism of electric-field-induced phase transition in antiferroelectric NaNbO3 by in situ high-energy x-ray diffraction. Appl. Phys. Lett. 118, 132903 (2021).
Rupprecht, G. & Bell, R. O. Dielectric constant in paraelectric perovskites. Phys. Rev. 135, A748âA752 (1964).
Li, Y., Hu, S. Y., Liu, Z.-K. & Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427â429 (2002).
Sakowski-Cowley, A. C., Åukaszewicz, K. & Megaw, H. D. The structure of sodium niobate at room temperature, and the problem of reliability in pseudosymmetric structures. Acta Cryst. B25, 851â865 (1969).