Thursday, August 28, 2025
No menu items!
HomeNatureUltrabroadband on-chip photonics for full-spectrum wireless communications

Ultrabroadband on-chip photonics for full-spectrum wireless communications

  • Aboagye, S. et al. Multi-band wireless communication networks: fundamentals, challenges, and resource allocation. IEEE Trans. Commun. 72, 4333–4383 (2024).


    Google Scholar
     

  • Chen, S. et al. Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 27, 218–228 (2020).


    Google Scholar
     

  • Saad, W., Bennis, M. & Chen, M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw. 34, 134–142 (2019).


    Google Scholar
     

  • Akyildiz, I. F., Kak, A. & Nie, S. 6G and beyond: the future of wireless communications systems. IEEE Access 8, 133995–134030 (2020).


    Google Scholar
     

  • Akyildiz, I. F., Han, C., Hu, Z., Nie, S. & Jornet, J. M. Terahertz band communication: an old problem revisited and research directions for the next decade. IEEE Trans. Commun. 70, 4250–4285 (2022).


    Google Scholar
     

  • Chen, X. et al. Massive access for 5G and beyond. IEEE J. Sel. Areas Commun. 39, 615–637 (2021).


    Google Scholar
     

  • Wang, W. et al. On-chip topological beamformer for multi-link terahertz 6G to XG wireless. Nature 632, 522–527 (2024).


    Google Scholar
     

  • Rappaport, T. S. et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019).


    Google Scholar
     

  • Rappaport, T. S. et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Trans. Antennas Propag. 65, 6213–6230 (2017).

    ADS 

    Google Scholar
     

  • Wang, C. X. et al. 6G wireless channel measurements and models: trends and challenges. IEEE Veh. Technol. Mag. 15, 22–32 (2020).


    Google Scholar
     

  • Chowdhury, M. Z., Shahjalal, M., Ahmed, S. & Jang, Y. M. 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 1, 957–975 (2020).


    Google Scholar
     

  • Letaief, K. B., Chen, W., Shi, Y., Zhang, J. & Zhang, Y.-J. A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57, 84–90 (2019).


    Google Scholar
     

  • Jiang, W., Han, B., Habibi, M. A. & Schotten, H. D. The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021).


    Google Scholar
     

  • Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

    ADS 

    Google Scholar
     

  • Jia, S. et al. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications. Nat. Commun. 13, 1388 (2022).

    ADS 

    Google Scholar
     

  • Dat, P. T. et al. Terahertz signal transparent relay and switching using photonic technology. J. Lightwave Technol. 42, 1173–1182 (2024).

    ADS 

    Google Scholar
     

  • Salamin, Y. et al. Microwave plasmonic mixer in a transparent fibre–wireless link. Nat. Photon. 12, 749–753 (2018).

    ADS 

    Google Scholar
     

  • Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    ADS 

    Google Scholar
     

  • Heffernan, B. M. et al. 60 Gbps real-time wireless communications at 300 GHz carrier using a Kerr microcomb-based source. APL Photonics 8, 066106 (2023).

    ADS 

    Google Scholar
     

  • Sun, S. et al. Integrated optical frequency division for microwave and mmWave generation. Nature 627, 540–545 (2024).

    ADS 

    Google Scholar
     

  • Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    ADS 

    Google Scholar
     

  • Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

    ADS 

    Google Scholar
     

  • Ummethala, S. et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photon. 13, 519–524 (2019).


    Google Scholar
     

  • Harter, T. et al. Wireless THz link with optoelectronic transmitter and receiver. Optica 6, 1063–1070 (2019).

    ADS 

    Google Scholar
     

  • Zhang, C. et al. Clone-comb-enabled high-capacity digital-analogue fronthaul with high-order modulation formats. Nat. Photon. 17, 1000–1008 (2023).

    ADS 

    Google Scholar
     

  • Dat, P. T. et al. Transparent fiber–millimeter-wave–fiber system in 100-GHz band using optical modulator and photonic down-conversion. J. Lightwave Technol. 40, 1483–1493 (2022).

    ADS 

    Google Scholar
     

  • Tao, Z. et al. Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication. Photonics Res. 11, 682–694 (2023).


    Google Scholar
     

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS 

    Google Scholar
     

  • Feng, H. et al. On-chip optical vector analysis based on thin-film lithium niobate single-sideband modulators. Adv. Photonics 6, 066006 (2024).


    Google Scholar
     

  • Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357–363 (2021).

    ADS 

    Google Scholar
     

  • Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).

    ADS 

    Google Scholar
     

  • Xu, M. et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11, 3911 (2020).

    ADS 

    Google Scholar
     

  • He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s- 1 and beyond. Nat. Photon. 13, 359–364 (2019).

    ADS 

    Google Scholar
     

  • Zhang, W. & Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwave Technol. 36, 4655–4663 (2018).

    ADS 

    Google Scholar
     

  • Ma, R. et al. Ka-band thin film lithium niobate photonic integrated optoelectronic oscillator. Photonics Res. 12, 1283–1293 (2024).


    Google Scholar
     

  • Tao, Z. et al. Versatile photonic molecule switch in multimode microresonators. Light Sci. Appl. 13, 51 (2024).

    ADS 

    Google Scholar
     

  • Feng, H. et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 10, 2366–2373 (2022).


    Google Scholar
     

  • Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 1725–1735 (1996).

    ADS 

    Google Scholar
     

  • Peng, H. et al. High sensitivity microwave phase noise analyzer based on a phase locked optoelectronic oscillator. Opt. Express 27, 18910–18927 (2019).

    ADS 

    Google Scholar
     

  • Yu, Y. et al. Frequency stabilization of the tunable optoelectronic oscillator based on anultra-high-q microring resonator. IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2019).


    Google Scholar
     

  • Singya, P. K., Shaik, P., Kumar, N., Bhatia, V. & Alouini, M.-S. A survey on higher-order QAM constellations: technical challenges, recent advances, and future trends. IEEE Open J. Commun. Soc. 2, 617–655 (2021).


    Google Scholar
     

  • Watteyne, T., Lanzisera, S., Mehta, A. & Pister, K. S. Mitigating multipath fading through channel hopping in wireless sensor networks. In Proc. 2010 IEEE International Conference on Communications 1–5 (IEEE, 2010).

  • Hwang, T., Yang, C., Wu, G., Li, S. & Li, G. Y. OFDM and its wireless applications: a survey. IEEE Trans. Veh. Technol. 58, 1673–1694 (2008).


    Google Scholar
     

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).

    ADS 

    Google Scholar
     

  • Li, M. et al. Heterogeneously-integrated self-injection locked lasers on thin film lithium niobate. In Proc. 2024 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2024).

  • Desiatov, B. & Lončar, M. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett. 115, 121108 (2019).

    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Monolithic lithium niobate photonic chip for efficient terahertz-optic modulation and terahertz generation. Preprint at https://doi.org/10.48550/arXiv.2406.19620 (2024).

  • Umezawa, T. et al. Bias-free operational UTC-PD above 110 GHz and its application to high baud rate fixed-fiber communication and W-band photonic wireless communication. J. Lightwave Technol. 34, 3138–3147 (2016).

    ADS 

    Google Scholar
     

  • Zhu, X. et al. Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate. Photonics Res. 12, A63–A68 (2024).


    Google Scholar
     

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-q microresonators. Nat. Photon. 15, 346–353 (2021).

    ADS 

    Google Scholar
     

  • Zhang, X. et al. High-coherence parallelization in integrated photonics. Nat. Commun. 15, 7892 (2024).


    Google Scholar
     

  • Tao, Z. et al. Data for “Ultrabroadband on-chip photonics for full-spectrum wireless communications”. Zenodo https://doi.org/10.5281/zenodo.15876445 (2025).

  • D’heer, C. & Reynaert, P. A fully integrated 135-GHz direct-digital 16-QAM wireless and dielectric waveguide link in 28-nm CMOS. IEEE J. Solid State Circuits 59, 889–907 (2023).

    ADS 

    Google Scholar
     

  • Guan, P. et al. A fully integrated QPSK/16-QAM D-band CMOS transceiver with mixed-signal baseband circuitry realizing digital interfaces. IEEE J Solid State Circuits 59, 3123–3141 (2024).


    Google Scholar
     

  • Mohammadnezhad, H., Wang, H., Cathelin, A. & Heydari, P. A 115–135-GHz 8PSK receiver using multi-phase RF-correlation-based direct-demodulation method. IEEE J. Solid State Circuits 54, 2435–2448 (2019).

    ADS 

    Google Scholar
     

  • Townley, A. et al. A fully integrated, dual channel, flip chip packaged 113 GHz transceiver in 28 nm CMOS supporting an 80 Gb/s wireless link. In Proc. 2020 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2020).

  • Deng, W. et al. An energy-efficient 10-Gb/s CMOS millimeter-wave transceiver with direct-modulation digital transmitter and I/Q phase-coupled frequency synthesizer. IEEE J. Solid State Circuits 55, 2027–2042 (2020).

    ADS 

    Google Scholar
     

  • Dasgupta, K. et al. A 60-GHz transceiver and baseband with polarization MIMO in 28-nm CMOS. IEEE J. Solid State Circuits 53, 3613–3627 (2018).

    ADS 

    Google Scholar
     

  • Pang, J. et al. A 50.1-Gb/s 60-GHz CMOS transceiver for IEEE 802.11ay with calibration of LO feedthrough and I/Q imbalance. IEEE J. Solid State Circuits 54, 1375–1390 (2019).

    ADS 

    Google Scholar
     

  • Deng, W. et al. A D-band joint radar-communication CMOS transceiver. IEEE J. Solid State Circuits 58, 411–427 (2022).

    ADS 

    Google Scholar
     

  • Lu, L. et al. Design of a 60-GHz joint radar–communication transceiver with a highly reused architecture utilizing reconfigurable dual-mode Gilbert cells. IEEE Trans. Microw. Theory Tech. 73, 245–257 (2025).


    Google Scholar
     

  • Grzyb, J., Rodrı́guez-Vázquez, P., Malz, S., Andree, M. & Pfeiffer, U. R. A SiGe HBT 215–240 GHz DCA IQ TX/RX chipset with built-in test of USB/LSB RF asymmetry for 100+ Gb/s data rates. IEEE Trans. Microw. Theory Tech. 70, 1696–1714 (2021).

    ADS 

    Google Scholar
     

  • Lee, S. et al. An 80-Gb/s 300-GHz-band single-chip CMOS transceiver. IEEE J. Solid State Circuits 54, 3577–3588 (2019).

    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments