Thursday, July 3, 2025
No menu items!
HomeNatureUltrabroadband and band-selective thermal meta-emitters by machine learning

Ultrabroadband and band-selective thermal meta-emitters by machine learning

  • Baranov, D. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, X., Yang, R., Tan, G. & Fan, S. Terrestrial radiative cooling: using the cold Universe as a renewable and sustainable energy source. Science 370, 786–791 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Raman, A. P. et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, K. et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382, 691–697 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, R. et al. Spectrally engineered textile for radiative cooling against urban heat islands. Science 384, 1203–1212 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, K. & Zheng, Y. Nanophotonics and Machine Learning, Vol. 241 (Springer, 2023).

  • Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, C. et al. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, W. et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning. Adv. Mater. 34, 2110022 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Correlating metasurface spectra with a generation-elimination framework. Nat. Commun. 14, 4872 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15, 815 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X. et al. A solution-processed radiative cooling glass. Science 382, 684–691 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 16, 182–190 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tang, H. et al. Both sub-ambient and above-ambient conditions: a comprehensive approach for the efficient use of radiative cooling. Energy Environ. Sci. 17, 4498–4507 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, D. et al. Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lan, P. et al. Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34, 202410285 (2024).


    Google Scholar
     

  • Kim, M. J. et al. Deep learning-assisted inverse design of nanoparticle-embedded radiative coolers. Opt. Express 32, 16235–16247 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, Q. et al. Machine learning-enabled inverse design of radiative cooling film with on-demand transmissive color. ACS Photonics 10, 715–726 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Z. et al. Machine-learning-assisted design of a robust biomimetic radiative cooling metamaterial. ACS Mater. Lett. 6, 2416–2424 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Seo, J. et al. Design of a broadband solar thermal absorber using a deep neural network and experimental demonstration of its performance. Sci. Rep. 9, 15028 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, S. et al. General deep learning framework for emissivity engineering. Light: Sci. Appl. 12, 291 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, X. et al. Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12, 1891–1902 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi, W. et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat. Commun. 14, 4694 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Compatible stealth metasurface for laser and infrared with radiative thermal engineering enabled by machine learning. Adv. Funct. Mater. 33, 2212068 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sullivan, J., Mirhashemi, A. & Lee, J. Deep learning-based inverse design of microstructured materials for optical optimization and thermal radiation control. Sci. Rep. 13, 7382 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W. et al. Machine learning-enabled design of metasurface based near-perfect daytime radiative cooler. Sol. Energy Mater. Sol. Cells 260, 112488 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ma, W. et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019).

    Article 

    Google Scholar
     

  • Kudyshev, Z., Kildishev, A. V., Shalaev, V. M. & Boltasseva, A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 7, 021407 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, N. N. et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl Acad. Sci. USA 117, 14657–14666 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordan, T. M., Partridge, J. C. & Roberts, N. W. Non-polarizing broadband multilayer reflectors in fish. Nat. Photonics 6, 759–763 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemcoff, T. et al. Brilliant whiteness in shrimp from ultra-thin layers of birefringent nanospheres. Nat. Photonics 17, 485–493 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, C. C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morais, C. L. M. et al. Standardization of complex biologically derived spectrochemical datasets. Nat. Protoc. 14, 1546–1577 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, M. et al. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem. Eng. J. 442, 136239 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, M. et al. Vapor condensation with daytime radiative cooling. Proc. Natl Acad. Sci. USA 118, e2019292118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. & Zhang, J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 13, 43387–43395 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, S. et al. Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19, 202301957 (2023).

    Article 

    Google Scholar
     

  • Zhao, D. et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl Acad. Sci. USA 117, 205–213 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, C. Ultrabroadband and band-selective thermal meta-emitters by machine learning. Code and dataset for inverse design of thermal meta-emitters. Zenodo https://doi.org/10.5281/zenodo.15229359 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments