Thursday, November 6, 2025
No menu items!
HomeNatureTwo residues reprogram immunity receptors for nitrogen-fixing symbiosis

Two residues reprogram immunity receptors for nitrogen-fixing symbiosis

  • Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science 369, 663–670 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiu, S. H. & Bleecker, A. B. Receptor-like kinases from Arabidopsisform a monophyletic gene family related to animal receptor kinases. Proc. Natl Acad. Sci. USA 98, 10763–10768 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zipfel, C. & Oldroyd, G. E. Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ngou, B. P. M., Wyler, M., Schmid, M. W., Kadota, Y. & Shirasu, K. Evolutionary trajectory of pattern recognition receptors in plants. Nat. Commun. 15, 308 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ma, Y. et al. Comparisons of two receptor–MAPK pathways in a single cell-type reveal mechanisms of signalling specificity. Nat. Plants 10, 1343–1362 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozsoki, Z. et al. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc. Natl Acad. Sci. USA 114, E8118–E8127 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miya, A. et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 19613–19618 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, G. et al. Release of a ubiquitin brake activates OsCERK1-triggered immunity in rice. Nature 629, 1158–1164 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, X. W. et al. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J. 81, 258–267 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, J. et al. A receptor required for chitin perception facilitates arbuscular mycorrhizal associations and distinguishes root symbiosis from immunity. Curr. Biol. 34, 1705–1717 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, R. C. et al. Wild species rice OsCERK1DY-mediated arbuscular mycorrhiza symbiosis boosts yield and nutrient use efficiency in rice breeding. Mol. Breed. 44, 22 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyata, K., et al. OsCERK2/OsRLK10, a homolog of OsCERK1, has a potential role for chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Biotechnol. 39, 119–128 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Feng, F. et al. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat. Commun. 10, 5047 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Liao, D. H., Sun, X., Wang, N., Song, F. M. & Liang, Y. Tomato LysM receptor-like kinase SlLYK12 is involved in arbuscular mycorrhizal symbiosis. Front. Plant. Sci. 9, 1004 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limpens, E. et al. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302, 630–633 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Radutoiu, S. et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Frank, M. et al. Single-cell analysis identifies genes facilitating rhizobium infection in Lotus japonicus. Nat. Commun. 14, 7171 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Red Brewer, M. et al. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34, 641–651 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, Q. et al. The juxtamembrane domains of CERK1, BAK1, and FLS2 play a conserved role in chitin-induced signaling. J. Integr. Plant Biol. 62, 556–562 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schauser, L., Roussis, A., Stiller, J. & Stougaard, J. A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195 (1999).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rübsam, H. et al. Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science 379, 272–277 (2023).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Buendia, L., Girardin, A., Wang, T., Cottret, L. & Lefebvre, B. LysM receptor-like kinase and LysM receptor-like protein families: an update on phylogeny and functional characterization. Front. Plant Sci. 9, 1531 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutten, L. et al. Duplication of symbiotic lysin motif receptors predates the evolution of nitrogen-fixing nodule symbiosis. Plant Physiol. 184, 1004–1023 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyata, K. et al. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55, 1864–1872 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, X. et al. Atypical receptor kinase RINRK1 required for rhizobial infection but not nodule development in Lotus japonicus. Plant Physiol. 181, 804–816 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Liu, M., Soyano, T., Yano, K., Hayashi, M. & Kawaguchi, M. ERN1 and CYCLOPS coordinately activate NIN signaling to promote infection thread formation in Lotus japonicus. J. Plant Res. 132, 641–653 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiessl, K., et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr. Biol. 29, 3657–3668 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. et al. Light-sensitive short hypocotyl genes confer symbiotic nodule identity in the legume Medicago truncatula. Curr. Biol. 34, 825–840 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hohmann, U., Lau, K. & Hothorn, M. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68, 109–137 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu, C. H. & Paszkowski, U. Receptor-like kinases sustain symbiotic scrutiny. Plant Physiol. 182, 1597–1612 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gust, A. A., Willmann, R., Desaki, Y., Grabherr, H. M. & Nürnberger, T. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci. 17, 495–502 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami, E. et al. Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. eLife 7, e33506 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. V. et al. An assemblage of Frankia Cluster II strains from California contains the canonical nodgenes and also the sulfotransferase gene nodH. BMC Genomics 17, 796 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griesmann, M. et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361, eaat1743 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mudumbi, K. C. et al. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. Cell Rep. 43, 113603 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheetz, J. B., Lemmon, M. A. & Tsutsui, Y. Dynamics of protein kinases and pseudokinases by HDX-MS. Methods Enzymol. 667, 303–338 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jhu, M. Y. & Oldroyd, G. E. D. Dancing to a different tune, can we switch from chemical to biological nitrogen fixation for sustainable food security? PLoS Biol. 21, e3001982 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malolepszy, A. et al. A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. eLife 7, e38874 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Márquez, A. J. Lotus japonicus Handbook (Springer, 2005).

  • Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Handberg, K. & Stougaard, J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 2, 487–496 (1992).

    Article 

    Google Scholar
     

  • Zhukov, V. et al. The pea Sym37receptor kinase gene controls infection-thread initiation and nodule development. Mol. Plant Microbe Interact. 21, 1600–1608 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maekawa, T. et al. Gibberellin controls the nodulation signaling pathway in Lotus japonicus. Plant J. 58, 183–194 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, S. J. et al. Conditional requirement for exopolysaccharide in the Mesorhizobium–Lotus symbiosis. Mol. Plant Microbe Interact. 26, 319–329 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, S. B. et al. A conserved juxtamembrane motif in plant NFR5 receptors is essential for root nodule symbiosis. Proc. Natl Acad. Sci. USA 121, e2405671121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villanueva, R. A. M. & Chen, Z. J. ggplot2: elegant graphics for data analysis (2nd ed.). Meas. Interdiscip. Res. 17, 160–167 (2019).


    Google Scholar
     

  • Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    Article 
    MATH 

    Google Scholar
     

  • Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).

    Article 

    Google Scholar
     

  • Girden, E. ANOVA (Sage Publications, 1992).

  • Tukey, J. W. Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Cianci, M. et al. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing. J. Synchrotron Radiat. 24, 323–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brehm, W., Triviño, J., Krahn, J. M., Usón, I. & Diederichs, K. XDSGUI: a graphical user interface for XDS, SHELX and ARCIMBOLDO. J. Appl. Crystallogr. 56, 1585–1594 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • The PyMOL Molecular Graphics System v.1.8 (Schrödinger, 2015).

  • RELATED ARTICLES

    Most Popular

    Recent Comments