Thursday, January 9, 2025
No menu items!
HomeNatureTwo-dimensional non-Hermitian skin effect in an ultracold Fermi gas

Two-dimensional non-Hermitian skin effect in an ultracold Fermi gas

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yao, S., Song, F. & Wang, Z. Non-hermitian Chern bands. Phys. Rev. Lett. 121, 136802 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yokomizo, K. & Murakami, S. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 123, 066404 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Guo, S., Dong, C., Zhang, F., Hu, J. & Yang, Z. Theoretical prediction of a non-Hermitian skin effect in ultracold-atom systems. Phys. Rev. A 106, L061302 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Zhou, L., Li, H., Yi, W. & Cui, X. Engineering non-Hermitian skin effect with band topology in ultracold gases. Commun. Phys. 5, 252 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Li, H. & Yi, W. Dissipative two-dimensional Raman lattice. Phys. Rev. A 107, 013306 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, S.-X. & Wan, S. Duality between the generalized non-Hermitian Hatano-Nelson model in flat space and a Hermitian system in curved space. Phys. Rev. B 106, 075112 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ju, C.-Y. et al. Einstein’s quantum elevator: Hermitization of non-Hermitian Hamiltonians via a generalized vielbein formalism. Phys. Rev. Res. 4, 023070 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chenwei, L., Ren, Z., Zhengzheng, Z. & Qi, Z. Curving the space by non-Hermiticity. Nat. Commun. 13, 2184 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Ryo, O., Ryo, T. & Kazuki, Y. Second-order topological non-Hermitian skin effects. Phys. Rev. B 102, 241202 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Kohei, K., Masatoshi, S. & Ken, S. Higher-order non-Hermitian skin effect. Phys. Rev. B 102, 205118 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ikhlef, Y., Jacobsen, J. L. & Saleur, H. Integrable spin chain for the SL(2, R)/U(1) black hole sigma model. Phys. Rev. Lett. 108, 081601 (2012).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bijan, B. & Sauvik, S. Artificial Hawking radiation, weak pseudo-Hermiticity, and Weyl semimetal blackhole analogy. J. Math. Phys. 63, 122102 (2022).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Ashida, Y., Gong, Z. & Ueda, M. Non-hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Helbig, T. et al. Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ezawa, M. Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization. Phys. Rev. B 99, 201411 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Non-Hermitian skin effect in a non-Hermitian electrical circuit. Research 2021, 5608038 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kozii, V. & Fu, L. Non-Hermitian topological theory of finite-lifetime quasiparticles: Prediction of bulk Fermi arc due to exceptional point. Phys. Rev. B 109, 235139 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Öztürk, F. E. et al. Observation of a non-Hermitian phase transition in an optical quantum gas. Science 372, 88–91 (2021).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS 
    MATH 

    Google Scholar
     

  • Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liang, Q. et al. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Nobuyuki, O., Kohei, K., Ken, S. & Masatoshi, S. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hofmann, T. et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res. 2, 023265 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, W. et al. Observation of non-Hermitian aggregation effects induced by strong interactions. Phys. Rev. B 105, 195131 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zou, D. et al. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun. 12, 7201 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shang, C. et al. Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning. Adv. Sci. 9, 2202922 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, X., Tian, Y., Jiang, J.-H., Lu, M.-H. & Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhou, Q. et al. Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points. Nat. Commun. 14, 4569 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, W., Hu, M., Wang, X., Ma, G. & Ding, K. Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice. Phys. Rev. Lett. 131, 207201 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wan, T., Zhang, K., Li, J., Yang, Z. & Yang, Z. Observation of the geometry-dependent skin effect and dynamical degeneracy splitting. Sci. Bull. 68, 2330–2335 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Gopalakrishnan, S. & Gullans, M. J. Entanglement and purification transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 126, 170503 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Okuma, N. & Sato, M. Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems. Phys. Rev. B 103, 085428 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kawabata, K., Numasawa, T. & Ryu, S. Entanglement phase transition induced by the non-Hermitian skin effect. Phys. Rev. X 13, 021007 (2023).

    CAS 
    MATH 

    Google Scholar
     

  • Song, B. et al. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv. 4, eaao4748 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X.-J., Liu, Z.-X. & Cheng, M. Manipulating topological edge spins in a one-dimensional optical lattice. Phys. Rev. Lett. 110, 076401 (2013).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ren, Z. et al. Chiral control of quantum states in non-Hermitian spin-orbit-coupled fermions. Nat. Phys. 18, 385–389 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, X.-J., Law, K. T. & Ng, T. K. Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett. 112, 086401 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Song, B. et al. Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys. 15, 911–916 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Liang, M.-C. et al. Realization of Qi-Wu-Zhang model in spin-orbit-coupled ultracold fermions. Phys. Rev. Res. 5, L012006 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yi, Y. & Yang, Z. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, H.-Y., Song, F. & Wang, Z. Amoeba formulation of non-Bloch band theory in arbitrary dimensions. Phys. Rev. X 14, 021011 (2024).

    CAS 
    MATH 

    Google Scholar
     

  • Zhang, K., Yang, Z. & Sun, K. Edge theory of non-Hermitian skin modes in higher dimensions. Phys. Rev. B 109, 165127 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Asteria, L., Zahn, H. P., Kosch, M. N., Sengstock, K. & Weitenberg, C. Quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems. Nature 599, 571–575 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. Y., Hong, J. S. & Liu, X. J. Symmetric non-Hermitian skin effect with emergent nonlocal correspondence. Phys. Rev. B 108, L060204 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kaluza, T. On the unification problem in physics. Int. J. Mod. Phys. D 27, 1870001 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37, 895–906 (1926).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Klein, O. The atomicity of electricity as a quantum theory law. Nature 118, 516 (1926).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Song, B. et al. Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms. Phys. Rev. A 94, 061604 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Murthy, P. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Holten, M. et al. Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas. Nature 606, 287–291 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mao, L., Deng, T. & Zhang, P. Boundary condition independence of non-Hermitian Hamiltonian dynamics. Phys. Rev. B 104, 125435 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments