Wednesday, October 30, 2024
No menu items!
HomeNatureTwo-dimensional-lattice-confined single-molecule-like aggregates | Nature

Two-dimensional-lattice-confined single-molecule-like aggregates | Nature

  • Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362–364 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hail, C. U. et al. Nanoprinting organic molecules at the quantum level. Nat. Commun. 10, 1880 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, K. P., Young, A. M. & Palmer, A. E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 114, 4564–4601 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Zhao, Q., Feng, W. & Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev. 113, 192–270 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cosco, E. D. et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angew. Chem. Int. Ed. 56, 13126–13129 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 29, 4332–4353 (2009).

    Article 

    Google Scholar
     

  • Lane, P. A. et al. Origin of electrophosphorescence from a doped polymer light emitting diode. Phys. Rev. B 63, 235206 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Doped organic crystals with high efficiency, color-tunable emission toward laser application. Cryst. Growth Des. 9, 4945–4950 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mischok, A., Hillebrandt, S., Kwon, S. & Gather, M. C. Highly efficient polaritonic light-emitting diodes with angle-independent narrowband emission. Nat. Photon. 17, 393–400 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vietze, U. et al. Zeolite-dye microlasers. Phys. Rev. Lett. 81, 4628–4631 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 4, 2719 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat. Commun. 10, 169 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, B. et al. Supramolecular solid-state microlaser constructed from pillar[5]arene-based host–guest complex microcrystals. J. Am. Chem. Soc. 140, 15651–15654 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-H. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photon. 12, 98–104 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, M. D., Connor, B. A. & Karunadasa, H. I. Tuning the luminescence of layered halide perovskites. Chem. Rev. 119, 3104–3139 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Passarelli, J. V. et al. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. J. Am. Chem. Soc. 140, 7313–7323 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, L., Gloor, C. J., Moran, A. M. & You, W. Non-covalent interactions involving π effect between organic cations in low-dimensional organic/inorganic hybrid perovskites. Appl. Phys. Lett. 122, 240501 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, K. et al. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404–410 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Era, M., Maeda, K. & Tsutsui, T. Enhanced phosphorescence from naphthalene-chromophore incorporated into lead bromide-based layered perovskite having organic–inorganic superlattice structure. Chem. Phys. Lett. 296, 417–420 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chondroudis, K. & Mitzi, D. B. Electroluminescence from an organic–inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11, 3028–3030 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Braun, M., Tuffentsammer, W., Wachtel, H. & Wolf, H. C. Pyrene as emitting chromophore in organic–inorganic lead halide-based layered perovskites with different halides. Chem. Phys. Lett. 307, 373–378 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ema, K., Inomata, M., Kato, Y., Kunugita, H. & Era, M. Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials. Phys. Rev. Lett. 100, 257401 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karl, M. et al. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silver, S., Yin, J., Li, H., Brédas, J.-L. & Kahn, A. Characterization of the valence and conduction band levels of n = 1 2D perovskites: a combined experimental and theoretical investigation. Adv. Energy Mater. 8, 1703468 (2018).

    Article 

    Google Scholar
     

  • Gryn’ova, G., Lin, K.-H. & Corminboeuf, C. Read between the molecules: computational insights into organic semiconductors. J. Am. Chem. Soc. 140, 16370–16386 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Design, structure, and optical properties of organic–inorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38, 6246–6256 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, C., Lee, M. & Choe, E. K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 58, 417–420 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gómez-Castaño, M. et al. Energy transfer and interference by collective electromagnetic coupling. Nano Lett. 19, 5790–5795 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spano, F. C., Kuklinski, J. R. & Mukamel, S. Temperature-dependent superradiant decay of excitons in small aggregates. Phys. Rev. Lett. 65, 211–214 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blach, D. D. et al. Superradiance and exciton delocalization in perovskite quantum dot superlattices. Nano Lett. 22, 7811–7818 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dursun, I. et al. Temperature-dependent optical and structural properties of chiral two-dimensional hybrid lead-iodide perovskites. J. Phys. Chem. C 127, 15423–15434 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Sci. Adv. 6, eaay4045 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aubrey, M. L. et al. Directed assembly of layered perovskite heterostructures as single crystals. Nature 597, 355–359 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, C. et al. Blue emitting single crystalline assembly of metal halide clusters. J. Am. Chem. Soc. 140, 13181–13184 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hestand, N. J. & Spano, F. C. Molecular aggregate photophysics beyond the Kasha model: novel design principles for organic materials. Acc. Chem. Res. 50, 341–350 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufmann, C., Bialas, D., Stolte, M. & Würthner, F. Discrete π-stacks of perylene bisimide dyes within folda-dimers: insight into long- and short-range exciton coupling. J. Am. Chem. Soc. 140, 9986–9995 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ilavsky, J. Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 45, 324–328 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Brunner, K., Tortschanoff, A., Warmuth, C., Bässler, H. & Kauffmann, H. F. Site torsional motion and dispersive excitation hopping transfer in π-conjugated polymers. J. Phys. Chem. B 104, 3781–3790 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Meskers, S. C. J., Hübner, J., Oestreich, M. & Bässler, H. Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: experiment and Monte Carlo simulations. J. Phys. Chem. B 105, 9139–9149 (2001).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments