Thursday, May 8, 2025
No menu items!
HomeNatureTwist-programmable superconductivity in spin–orbit-coupled bilayer graphene

Twist-programmable superconductivity in spin–orbit-coupled bilayer graphene

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250–1254 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551–3556 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022).

    Article 

    Google Scholar
     

  • Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Origin and magnitude of ‘designer’ spin–orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 6, 041020 (2016).


    Google Scholar
     

  • Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin–orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Khoo, J. Y., Morpurgo, A. F. & Levitov, L. On-demand spin–orbit interaction from which-layer tunability in bilayer graphene. Nano Lett. 17, 7003–7008 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khoo, J. Y. & Levitov, L. Tunable quantum Hall edge conduction in bilayer graphene through spin–orbit interaction. Phys. Rev. B 98, 115307 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Quantum Hall effect measurement of spin–orbit coupling strengths in ultraclean bilayer graphene/WSe2 heterostructures. Nano Lett. 19, 7028–7034 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin–orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holleis, L. et al. Nematicity and orbital depairing in superconducting Bernal bilayer graphene. Nat. Phys. 21, 444–450 (2025).

  • Li, C. et al. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 631, 300–306 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F. & Das Sarma, S. Enhanced superconductivity through virtual tunneling in Bernal bilayer graphene coupled to WSe2. Phys. Rev. B 106, L180502 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • David, A., Rakyta, P., Kormányos, A. & Burkard, G. Induced spin–orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: twistronics meets spintronics. Phys. Rev. B 100, 085412 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naimer, T., Zollner, K., Gmitra, M. & Fabian, J. Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition metal dichalcogenide heterostructures. Phys. Rev. B 104, 195156 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zollner, K., João, S. M., Nikolić, B. K. & Fabian, J. Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and charge-to-spin conversion in heterostructures of graphene and transition metal dichalcogenides. Phys. Rev. B 108, 235166 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Masseroni, M. et al. Spin-orbit proximity in MoS2/bilayer graphene heterostructures. Nat. Commun. 15, 9251 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiler, A. M. et al. Layer-selective spin–orbit coupling and strong correlation in bilayer graphene. Preprint at https://arxiv.org/abs/2403.17140 (2024).

  • Sun, L. et al. Spin-orbit proximity in MoS2/bilayer graphene heterostructures. Nat. Commun. 14, 3771 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tolmachev, V. V. Logarithmic criterion for superconductivity. Dokl. Akad. Nauk SSSR 140, 563–566 (1961).

    MathSciNet 

    Google Scholar
     

  • Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron–phonon interaction. Phys. Rev. 125, 1263–1271 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kedves, M. et al. Stabilizing the inverted phase of a WSe2/BLG/WSe2 heterostructure via hydrostatic pressure. Nano Lett. 23, 9508–9514 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dong, Z., Davydova, M., Ogunnaike, O. & Levitov, L. Isospin- and momentum-polarized orders in bilayer graphene. Phys. Rev. B 107, 075108 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, J.-X. et al. Spontaneous momentum polarization and diodicity in Bernal bilayer graphene. Preprint at https://arxiv.org/abs/2302.04261 (2023).

  • Nuckolls, K. P. et al. Quantum textures of the many-body wavefunctions in magic-angle graphene. Nature 620, 525–532 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arp, T. et al. Intervalley coherence and intrinsic spin–orbit coupling in rhombohedral trilayer graphene. Nat. Phys. 20, 1413–1420 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, S., Wang, T., Berg, E. & Zaletel, M. P. Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene. Nat. Commun. 13, 6013 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, J. M., Thomson, A., Alicea, J. & Lantagne-Hurtubise, É. Symmetry-broken metallic orders in spin–orbit-coupled Bernal bilayer graphene. Phys. Rev. B 110, 245118 (2024).

    Article 
    CAS 

    Google Scholar
     

  • You, Y.-Z. & Vishwanath, A. Kohn–Luttinger superconductivity and intervalley coherence in rhombohedral trilayer graphene. Phys. Rev. B 105, 134524 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie, M. & Das Sarma, S. Flavor symmetry breaking in spin–orbit coupled bilayer graphene. Phys. Rev. B 107, L201119 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomson, A., Sorensen, I. M., Nadj-Perge, S. & Alicea, J. Gate-defined wires in twisted bilayer graphene: from electrical detection of intervalley coherence to internally engineered Majorana modes. Phys. Rev. B 105, L081405 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koh, J. M., Alicea, J. & Lantagne-Hurtubise, É. Correlated phases in spin–orbit-coupled rhombohedral trilayer graphene. Phys. Rev. B 109, 035113 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhumagulov, Y., Kochan, D. & Fabian, J. Swapping exchange and spin-orbit induced correlated phases in proximitized Bernal bilayer graphene. Phys. Rev. B 110, 045427 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Z., Lantagne-Hurtubise, É. & Alicea, J. Superconductivity from spin-canting fluctuations in rhombohedral graphene. Preprint at https://arxiv.org/abs/2406.17036 (2024).

  • Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. M. et al. Evidence for two-dimensional Isuperconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Szentpéteri, B. et al. Tuning the proximity induced spin–orbit coupling in bilayer graphene/WSe2 heterostructures with pressure. Preprint at https://arxiv.org/abs/2409.20062 (2024).

  • Cohen, M. H. & Falicov, L. M. Magnetic breakdown in crystals. Phys. Rev. Lett. 7, 231–233 (1961).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments