Friday, August 1, 2025
No menu items!
HomeNatureTropical response to ocean circulation slowdown raises future drought risk

Tropical response to ocean circulation slowdown raises future drought risk

  • Intergovernmental Panel on Climate Change in Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1–30 (Cambridge Univ. Press, 2013).

  • Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021).

  • Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 3659 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Dong, B.-W. & Sutton, R. T. Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation. Geophys. Res. Lett. 29, 18-1–18-4 (2002).


    Google Scholar
     

  • Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002).


    Google Scholar
     

  • Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).

    ADS 

    Google Scholar
     

  • Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    ADS 

    Google Scholar
     

  • Kageyama, M. et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim. Past. 9, 935–953 (2013).


    Google Scholar
     

  • Lynch-Stieglitz, J. The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci. 9, 83–104 (2017).

    ADS 

    Google Scholar
     

  • Pöppelmeier, F., Jeltsch-Thömmes, A., Lippold, J., Joos, F. & Stocker, T. F. Multi-proxy constraints on Atlantic circulation dynamics since the last ice age. Nat. Geosci. 16, 349–356 (2023).

    ADS 

    Google Scholar
     

  • Clement, A. C. & Peterson, I. C. Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys. 46, RG4002 (2008).

    ADS 

    Google Scholar
     

  • Orihuela-Pinto, B., England, M. H. & Taschetto, A. S. Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nat. Clim. Change 12, 558–565 (2022).

    ADS 

    Google Scholar
     

  • Smeed, D. A. et al. The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett. 45, 1527–1533 (2018).

    ADS 

    Google Scholar
     

  • Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).

    ADS 

    Google Scholar
     

  • Kilbourne, K. H. et al. Atlantic circulation change still uncertain. Nat. Geosci. 15, 165–167 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science 331, 1299–1302 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Andrews, J. T. & Voelker, A. H. “Heinrich events” (& sediments): a history of terminology and recommendations for future usage. Quat. Sci. Rev. 187, 31–40 (2018).

    ADS 

    Google Scholar
     

  • DiNezio, P. N. & Tierney, J. E. The effect of sea level on glacial Indo-Pacific climate. Nat. Geosci. 6, 485–491 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Timmermann, A. et al. The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Clim. 20, 4899–4919 (2007).

    ADS 

    Google Scholar
     

  • Xie, S.-P., Okumura, Y., Miyama, T. & Timmermann, A. Influences of Atlantic climate change on the tropical Pacific via the Central American isthmus. J. Clim. 21, 3914–3928 (2008).

    ADS 

    Google Scholar
     

  • Liu, Y., Chiang, J. C. H., Chou, C. & Patricola, C. M. Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall. Clim. Dyn. 43, 2797–2811 (2014).


    Google Scholar
     

  • DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, eaat9658 (2018).

    ADS 

    Google Scholar
     

  • Marzin, C., Kallel, N., Kageyama, M., Duplessy, J.-C. & Braconnot, P. Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Clim. Past 9, 2135–2151 (2013).


    Google Scholar
     

  • Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Mohtadi, M. et al. North Atlantic forcing of tropical Indian Ocean climate. Nature 509, 76–80 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Wan, X., Chang, P., Saravanan, R., Zhang, R. & Schmidt, M. W. On the interpretation of Caribbean paleo-temperature reconstructions during the Younger Dryas. Geophys. Res. Lett. 36, L02701 (2009).

    ADS 

    Google Scholar
     

  • Kienast, M. et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846–849 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Tierney, J. E., Pausata, F. S. R. & deMenocal, P. Deglacial indian monsoon failure and North Atlantic stadials linked by indian ocean surface cooling. Nat. Geosci. 9, 46–50 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv. 3, e1601666 (2017).

    ADS 

    Google Scholar
     

  • Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    ADS 

    Google Scholar
     

  • Xie, S.-P. & Philander, G. H. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46, 340–350 (1994).

    ADS 

    Google Scholar
     

  • Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005).

    ADS 

    Google Scholar
     

  • Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    ADS 

    Google Scholar
     

  • Meehl, G. A. et al. THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    ADS 

    Google Scholar
     

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS 

    Google Scholar
     

  • Manabe, S. & Stouffer, R. J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Kageyama, M. et al. Glacial climate sensitivity to different states of the Atlantic Meridional overturning circulation: results from the IPSL model. Clim. Past 5, 551–570 (2009).


    Google Scholar
     

  • Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for bølling-allerød warming. Science 325, 310–314 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Y. & McManus, J. F. Heinrich event ice discharge and the fate of the Atlantic Meridional Overturning Circulation. Science 384, 983–986 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Otto-Bliesner, B. L. et al. Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett. 34, L12706 (2007).

    ADS 

    Google Scholar
     

  • Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr. Quat. Sci. Rev. 29, 43–55 (2010).

    ADS 

    Google Scholar
     

  • Braconnot, P. et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Clim. Past 3, 261–277 (2007).


    Google Scholar
     

  • Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    ADS 

    Google Scholar
     

  • Campos, M. C. et al. A new mechanism for millennial scale positive precipitation anomalies over tropical South America. Quat. Sci. Rev. 225, 105990 (2019).


    Google Scholar
     

  • Erokhina, O. et al. Dependence of slope lapse rate over the Greenland ice sheet on background climate. J. Glaciol. 63, 568–572 (2017).

    ADS 

    Google Scholar
     

  • Otto-Bliesner, B. L. & Brady, E. C. The sensitivity of the climate response to the magnitude and location of freshwater forcing: last glacial maximum experiments. Quat. Sci. Rev. 29, 56–73 (2010).

    ADS 

    Google Scholar
     

  • He, F. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3. PhD dissertation, Univ. Wisconsin-Madison (2011).

  • Bakker, P., Rogozhina, I., Merkel, U. & Prange, M. Hypersensitivity of glacial summer temperatures in Siberia. Clim. Past 16, 371–386 (2020).


    Google Scholar
     

  • Liu, Y. & Chiang, J. C. H. Coordinated abrupt weakening of the Eurasian and North African monsoons in the 1960s and links to extratropical North Atlantic cooling. J. Clim. 25, 3532–3548 (2012).

    ADS 

    Google Scholar
     

  • Biasutti, M. et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 11, 392–400 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Thompson, L. G. et al. Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269, 46–50 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Thompson, L. G. et al. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 1858–1864 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Ramirez, E. et al. A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet. Sci. Lett. 212, 337–350 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Roy, P. D. et al. Late Quaternary paleohydrological conditions in the drylands of northern Mexico: a summer precipitation proxy record of the last 80 cal ka BP. Quat. Sci. Rev. 78, 342–354 (2003).

    ADS 

    Google Scholar
     

  • Pausata, F. S. R., Battisti, D. S., Nisancioglu, K. H. & Bitz, C. M. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat. Geosci. 4, 474–480 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 24374 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Cruz, F. W. Jr et al. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 63–66 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Carlson, A. E. et al. Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation. Geology 36, 991–994 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • DiNezio, P. N. et al. Synthesis of hydroclimate changes during Heinrich Stadial 1. Zenodo https://doi.org/10.5281/zenodo.13881535 (2024).

  • Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    ADS 

    Google Scholar
     

  • Merkel, U., Prange, M. & Schulz, M. ENSO variability and teleconnections during glacial climates. Quat. Sci. Rev. 29, 86–100 (2010).

    ADS 

    Google Scholar
     

  • Kageyama, M. et al. Mid-holocene and Last Glacial Maximum climate simulations with the IPSL model—part I: Comparing IPSL_CM5A to IPSL_CM4. Clim. Dyn. 40, 2447–2468 (2013).


    Google Scholar
     

  • Zhang, X., Lohmann, G., Knorr, G. & Xu, X. Different ocean states and transient characteristics in last glacial maximum simulations and implications for deglaciation. Clim. Past 9, 2319–2333 (2013).


    Google Scholar
     

  • Chikamoto, M. O., Abe-Ouchi, A., Oka, A., Ohgaito, R. & Timmermann, A. Quantifying the ocean’s role in glacial CO2 reductions. Clim. Past 8, 545–563 (2012).


    Google Scholar
     

  • Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Zhao, M., Beveridge, N. A. S., Shackleton, N. J., Sarnthein, M. & Eglinton, G. Molecular stratigraphy of cores off northwest Africa: sea surface temperature history over the last 80 Ka. Paleoceanography 10, 661–675 (1995).

    ADS 

    Google Scholar
     

  • Schmidt, M. W., Spero, H. J. & Lea, D. W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, 160–163 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Crivellari, S. et al. Thermal response of the western tropical Atlantic to slowdown of the Atlantic meridional overturning circulation. Earth Planet. Sci. Lett. 519, 120–129 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G. & Zahn, R. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402, 511–514 (1999).

    ADS 

    Google Scholar
     

  • Herbert, T. D. & Schuffert, J. D. Alkenone unsaturation estimates of sea-surface temperatures at site 1002 over a full glacial cycle. Proc. ODP Sci. Results 165, 239–247 (2000).


    Google Scholar
     

  • Lea, D. W., Pak, D. K., Peterson, L. C. & Hughen, K. A. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 1361–1364 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Reißig, S., Nürnberg, D., Bahr, A., Poggemann, D.-W. & Hoffmann, J. Southward displacement of the North Atlantic subtropical gyre circulation system during North Atlantic cold spells. Paleoceanogr. Paleoclimatol. 34, 866–885 (2019).

    ADS 

    Google Scholar
     

  • Schmidt, M. W. et al. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. Proc. Natl Acad. Sci. USA 109, 14348–14352 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, J.-H. et al. Pronounced subsurface cooling of North Atlantic waters off northwest Africa during Dansgaard–Oeschger interstadials. Earth Planet. Sci. Lett. 339–340, 95–102 (2012).

    ADS 

    Google Scholar
     

  • Bahr, A. et al. Low-latitude expressions of high-latitude forcing during Heinrich Stadial 1 and the Younger Dryas in northern South America. Glob. Planet. Change 160, 1–10 (2018).

  • DiNezio, P. N. Matlab code to reproduce results from “Tropical response to ocean circulation slowdown raises future drought risk” by DiNezio et al. (2025). Zenodo https://doi.org/10.5281/zenodo.13886977 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments