Friday, May 9, 2025
No menu items!
HomeNatureTrends in the seasonal amplitude of atmospheric methane

Trends in the seasonal amplitude of atmospheric methane

  • IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Rubino, M. et al. Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data 11, 473–492 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, L., Brook, E., Lee, J. E., Buizert, C. & Sowers, T. Constraints on the late Holocene anthropogenic contribution to the atmospheric methane budget. Science 342, 964–966 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Phil. Trans. R. Soc. A 369, 2058–2072 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dlugokencky, E. J., Masarie, K. A., Tans, P. P., Conway, T. J. & Xiong, X. Is the amplitude of the methane seasonal cycle changing? Atmos. Environ. 31, 21–26 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Dowd, E. et al. Decreasing seasonal cycle amplitude of methane in the northern high latitudes being driven by lower-latitude changes in emissions and transport. Atmos. Chem. Phys. 23, 7363–7382 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, S. et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612, 477–482 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Recent intensification of wetland methane feedback. Nat. Clim. Change 13, 430–433 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yuan, K. et al. Boreal–Arctic wetland methane emissions modulated by warming and vegetation activity. Nat. Clim. Change 14, 282–288 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naus, S. et al. Constraints and biases in a tropospheric two-box model of OH. Atmos. Chem. Phys. 19, 407–424 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Skeie, R. B., Hodnebrog, Ø. & Myhre, G. Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions. Commun. Earth Environ. 4, 317 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lan, X., Thoning, K. W. & Dlugokencky, E. J. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2024-06. NOAA Global Monitoring Laboratory https://doi.org/10.15138/P8XG-AA10 (2024).

  • Dlugokencky, E. J. et al. Atmospheric methane levels off: temporary pause or a new steady-state? Geophys. Res. Lett. 30, 1992 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Nisbet, E. G. et al. Very strong atmospheric methane growth in the 4 years 2014–2017: implications for the Paris Agreement. Glob. Biogeochem. Cycles 33, 318–342 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lan, X. et al. Improved constraints on global methane emissions and sinks using δ13C-CH4. Glob. Biogeochem. Cycles 35, e2021GB007000 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schaefer, H. et al. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 352, 80–84 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, A. J., Frankenberg, C., Wennberg, P. O. & Jacob, D. J. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc. Natl Acad. Sci. USA 114, 5367–5372 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basu, S. et al. Estimating emissions of methane consistent with atmospheric measurements of methane and δ13C of methane. Atmos. Chem. Phys. 22, 15351–15377 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, N. et al. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515, 394–397 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thoning, K. W., Tans, P. P. & Komhyr, W. D. Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. Atmos. 94, 8549–8565 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McKain, K. et al. NOAA Global Greenhouse Gas Reference Network Flask-Air PFP Sample Measurements of CO2, CH4, CO, N2O, H2, SF6 and isotopic ratios collected from aircraft vertical profiles [Data set]. Version: 2023-08-11. NOAA Global Monitoring Laboratory https://doi.org/10.15138/39HR-9N34 (2023).

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bintanja, R. et al. Strong future increases in Arctic precipitation variability linked to poleward moisture transport. Sci. Adv. 6, eaax6869 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, X. et al. Recent methane surges reveal heightened emissions from tropical inundated areas. Nat. Commun. 15, 10894 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koffi, E. N., Bergamaschi, P., Alkama, R. & Cescatti, A. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci. Adv. 6, eaay4444 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Descals, A. et al. Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science 378, 532–537 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, L. et al. National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations. Nat. Commun. 14, 4948 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Segers, A., Steinke, T. & Houweling, S. Description of the CH4 Inversion Production Chain, CAMS (Copernicus Atmospheric Monitoring Service) Report (2022); https://atmosphere.copernicus.eu/sites/default/files/2022-10/CAMS255_2021SC1_D55.5.2.1-2021CH4_202206_production_chain_CH4_v1.pdf.

  • Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11, 45–51 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Xi, Y. et al. Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL. Sci. Data 9, 347 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Bernard, J. et al. Assessing the time variability of GIEMS-2 satellite-derived surface water extent over 30 years. Front. Remote Sens. https://doi.org/10.3389/frsen.2024.1399234 (2024).

  • Zhang, X. et al. Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022. Sci. Data 11, 310 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, W. J. et al. AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev. 10, 585–607 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmos. Chem. Phys. 20, 13011–13022 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stevenson, D. S. et al. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmos. Chem. Phys. 20, 12905–12920 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Wang, Y. & Jacob, D. J. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J. Geophys. Res. Atmos. 103, 31123–31135 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McDuffie, E. E. et al. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 12, 3413–3442 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Claxton, T. et al. A synthesis inversion to constrain global emissions of two very short lived chlorocarbons: dichloromethane, and perchloroethylene. J. Geophys. Res. Atmos. 125, e2019JD031818 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • East, J. D. et al. Interpreting the seasonality of atmospheric methane. Geophys. Res. Lett. 51, e2024GL108494 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58, 95–126 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Dlugokencky, E. J., Steele, L. P., Lang, P. M. & Masarie, K. A. The growth rate and distribution of atmospheric methane. J. Geophys. Res. Atmos. 99, 17021–17043 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crippa, M. et al. GHG Emissions of All World Countries: 2021 Report (Publications Office of the European Union, 2021); https://doi.org/10.2760/173513.

  • O’Rourke, P. et al. CEDS v_2021_02_05 release emission data. Zenodo https://doi.org/10.5281/zenodo.4509372 (2021).

  • Guimberteau, M. et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geosci. Model Dev. 11, 121–163 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hauglustaine, D. A. et al. Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: description and background tropospheric chemistry evaluation. J. Geophys. Res. Atmos. 109, D04314 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Hauglustaine, D. A., Balkanski, Y. & Schulz, M. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. Atmos. Chem. Phys. 14, 11031–11063 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Shen, L. et al. A machine-learning-guided adaptive algorithm to reduce the computational cost of integrating kinetics in global atmospheric chemistry models: application to GEOS-Chem versions 12.0.0 and 12.9.1. Geosci. Model Dev. 15, 1677–1687 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • China Statistical Yearbook 2021 (China Statistics Press, 2021).

  • Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2 d_flx_Nx: 2d,1-hourly, time-averaged, single-level, assimilation, surface flux diagnostics V5.12.4. GSFC DAAC https://doi.org/10.5067/7MCPBJ41Y0K6 (2021).

  • Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z., Zimmermann, N. E., Kaplan, J. O. & Poulter, B. Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13, 1387–1408 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Colligan, T., Poulter, B. & Colin, Q. LPJ-EOSIM L2 global simulated monthly wetland methane flux V001, distributed by NASA EOSDIS Land Processes Distributed Active Archive Center. Earth Data https://doi.org/10.5067/Community/LPJ-EOSIM/LPJ_EOSIM_L2_MCH4E.001 (2024).

  • Messina, P. et al. Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmos. Chem. Phys. 16, 14169–14202 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments