Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).
Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).
Beerling, D. J. et al. Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits. Proc. Natl Acad. Sci. USA 121, e2319436121 (2024).
Kantola, I. B. et al. Improved net carbon budgets in the US Midwest through direct measured impacts of enhanced weathering. Glob. Change Biol. 29, 7012–7028 (2023).
The Long-term Strategy of the United States: Pathways to Net-zero Greenhouse Gas Emissions by 2050 (US Department of State, 2021).
Larson, E. et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Interim Report (Princeton Univ., 2020).
Cox, E., Spence, E. & Pidgeon, N. Public perceptions of carbon dioxide removal in the United States and the United Kingdom. Nat. Clim. Change 10, 744–749 (2020).
Baum, C., Fritz, L., Low, S. & Sovacool, B. K. Public perception and support of climate intervention technologies across the global north and the global south. Nat. Commun. 15, 2060 (2024).
Hansen, J. et al. Young people’s burden: requirement of negative CO2 emissions. Earth Syst. Dyn. 8, 577–616 (2017).
Kantola, I. B., Masters, M. D., Beerling, D. J., Long, S. P. & DeLucia, E. H. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett. 13, 20160714 (2017).
Kantzas, E. P. et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. Nat. Geosci. 15, 382–389 (2022).
Holden, P. B. et al. Climate–carbon cycle uncertainties and the Paris Agreement. Nat. Clim. Change 8, 609–613 (2018).
Mercure, J.-F. et al. Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy Strat. Rev. 20, 195–208 (2018).
Spence, E., Cox, E. & Pidgeon, N. Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy. Clim. Change 165, 23 (2021).
Clarkson, M.O. et al. A review of measurement for quantification of carbon dioxide removal by enhanced weathering in soil. Front. Clim. 6, 1345224 (2024).
Baik, E. et al. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States. Proc. Natl Acad. Sci. USA 115, 3290–3295 (2018).
Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl Acad. Sci. USA 117, 24649–24651 (2020).
Li, Z., Planavsky, N. J. & Reinhard, C. T. Geospatial assessment of the cost and energy demand of feedstock grinding for enhanced rock weathering in the coterminous United States. Front. Clim. 6, 1380651 (2024).
Somani, A., Nandi, T. K., Pal, S. K. & Majumder, A. K. Pre-treatment of rocks prior to comminution—a critical review of present practices. Int. J. Mining Sci. Technol. 27, 339–348 (2017).
Zhang, S. et al. River chemistry constraints on the carbon capture potential of surficial enhanced rock weathering. Limnol. Oceanogr. 67, S148–S157 (2022).
Rassmann, J., Lansard, B., Pozzato, L. & Rabouille, C. Carbonate chemistry in sediment porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean). Biogeosciences 13, 5379–5394 (2016).
Kanzaki, Y., Planavsky, N. J. & Reinhard, C. T. New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering. PNAS Nexus 2, pgad059 (2023).
Enesi, R. O. et al. Liming remediates soil acidity and improves crop yield and profitability—a meta-analysis. Front. Agron. 5, 1194896 (2023).
Alves, L. A. et al. Biological N2 fixation by soybeans grown with or without liming on acid soils in a no-till integrated crop-livestock system. Soil Tillage Res. 209, 104923 (2021).
Merry, R. et al. Iron deficiency in soybean. Crop Sci. 62, 36–52 (2022).
Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 4, 138–147 (2018).
Gérard, F. Clay minerals, iron/aluminium oxides, and their contribution to phosphate sorption in soils—a myth revisited. Geoderma 262, 213–226 (2016).
Baffes, J. & Koh, W. C. Fertilizer prices expected to remain higher for longer. World Bank Blogs https://blogs.worldbank.org/en/opendata/fertilizer-prices-expected-remain-higher-longer (2022).
Val Martin, M. et al. Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO and NH3 emissions from enhanced rock weathering with croplands. Geosci. Model Dev. 16, 5783–5801 (2023).
Blanc-Betes, E. et al. In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops. Glob. Change Biol. Bioenergy 13, 224–241 (2020).
Chiaravalloti, I. et al. Mitigation of soil nitrous oxide emissions during maize production with basalt amendments. Front. Clim. 5, 1203043 (2023).
Weber, J. et al. Global agricultural N2O emission reduction strategies deliver climate benefits with minimum impact on stratospheric O3 recovery. npj Clim. Atmos. Sci. 7, 121 (2024).
Logan, J. A. Nitrogen oxides in the troposphere: global and regional budgets. J. Geophys. Res. Oceans 88, 10785–10807 (1983).
Tai, A. P. K. et al. Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO2. Front. Sustain. Food Syst. 5, 534616 (2021).
Avnery, S., Mauzerall, D. L. & Fiore, A. M. Increasing global agricultural production by reducing ozone damages via methane emission controls and ozone-resistant cultivar selection. Glob. Change Biol. 19, 1285–1299 (2013).
Bhattarai, H., Tai, A. P., Martin, M. V. & Yung, D. H. Impacts of changes in climate, land use, and emissions on global ozone air quality by mid-21st century following selected Shared Socioeconomic Pathways. Sci. Total Environ. 906, 167759 (2024).
Zanis, P. et al. Climate change penalty and benefit on surface ozone: a global perspective based on CMIP6 earth system models. Environ. Res. Lett. 17, 024014 (2022).
Mkhabela, M. S., Gordon, R., Burton, D., Madani, A. & Hart, W. Effect of lime, dicyandiamide and soil water content on ammonia and nitrous oxide emissions following application of liquid hog manure to a marshland soil. Plant Soil 284, 351–361 (2006).
Chen, J. et al. Seasonal modeling of PM2. 5 in California’s San Joaquin Valley. Atmos. Environ. 92, 182–190 (2014).
Zhang, B., Kroeger, J., Planavsky, N. & Yao, Y. Techno-economic and life cycle assessment of enhanced rock weathering: a case study from the Midwestern United States. Environ. Sci. Technol. 57, 13828–13837 (2023).
Negative Emissions Technologies and Reliable Sequestration (The National Academies Press, 2019).
Lefebvre, D. et al. Assessing the potential of soil carbonation and enhanced weathering through life cycle assessment: a case study for Sao Paulo State, Brazil. J. Clean. Prod. 233, 468–481 (2019).
Leonardi, J., McKinnon, A. & Palmer, A. Guidance on Measuring and Reporting Greenhouse Gas (GHG) Emissions from Freight Transport Operations (GOV.UK, 2009); https://assets.publishing.service.gov.uk/media/5a7c2df4e5274a25a9140f9d/ghg-freight-guide.pdf.
Campbell-Arvai, V., Hart, P. S., Raimi, K. T. & Wolske, K. S. The influence of learning about carbon dioxide removal (CDR) on support for mitigation policies. Climatic Change 143, 321–336 (2017).
Sovacool, B. K., Low, S. & Baum, C. Climate protection or privilege? A whole systems justice milieu of twenty negative emissions and solar geoengineering technologies. Political Geogr. 97, 102702 (2022).
Pidgeon, N. & Demski, C. C. From nuclear to renewable: energy system transformation and public attitudes. Bull. Atom. Sci. 68, 41–51 (2012).
Justice40 Initiative (Department of Energy, 2022); https://www.energy.gov/justice/justice40-initiative.
Pett-Ridge, J. et al. Roads to Removal: Options for Carbon Dioxide Removal in the United States (Lawrence Livermore National Laboratory, 2023).
Mining Overview (USGS, 2013).
Mineral Commodity Summaries (USGS, 2022).
Levy, C. R. et al. Enhanced rock weathering for carbon removal—monitoring and mitigating potential environmental impacts on agricultural land. Environ. Sci. Technol. 58, 17215–17226 (2024).
Eufrasio, R. M. et al. Environmental and health impacts of atmospheric CO2 removal by enhanced rock weathering depend on nations’ energy mix. Commun. Earth Environ. 3, 106 (2022).
National Hardrock Mining Framework (US EPA, 1997).
Wang, H. et al. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: a case study from Xuyi County, eastern China. Sci. Total Environ. 729, 139058 (2020).
Stets, E. G., Kelly, V. J. & Crawford, C. G. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. Sci. Total Environ. 488, 280–289 (2014).
Val Martin, M. Air quality crop damage US (Beerling et al 2025, nature). Zenodo https://doi.org/10.5281/zenodo.14755340 (2025).
Val Martin, M. Soil nitrogen trace as fluxes for the US. Zenodo https://doi.org/10.5281/zenodo.14755401 (2025).
Kantzas, E. US EW modelling outputs (Beerling et al. 2025, nature). Zenodo https://doi.org/10.5281/zenodo.14755423 (2025).
Zhang, S. US river geochemistry catchment code. Zenodo https://doi.org/10.5281/zenodo.14605782 (2024).
Lomas, M. & Kantzas, E. US soil profile EW code. Zenodo https://doi.org/10.5281/zenodo.10940280 (2024).
Lomas, M. US energy farm EW field trial—EW model vs data comparison. Zenodo https://doi.org/10.5281/zenodo.12806314 (2024).
Val Martin, M. CLM5.0.25 with improved N cycling to quantify soil N2O, NO and NH3 emissions from enhanced rock weathering with croplands. Zenodo https://doi.org/10.5281/zenodo.8111541 (2023).