Tuesday, April 15, 2025
No menu items!
HomeNatureTransforming ceria into 2D clusters enhances catalytic activity

Transforming ceria into 2D clusters enhances catalytic activity

  • Summers, J. C. & Ausen, S. A. Interaction of cerium oxide with noble metals. J. Catal. 58, 131–143 (1979).

    Article 

    Google Scholar
     

  • Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996).

    Article 

    Google Scholar
     

  • Montini, T., Melchionna, M., Monai, M. & Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987–6041 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Gorte, R. J. Ceria in catalysis: from automotive applications to the water–gas shift reaction. AIChE J 56, 1126–1135 (2010).

    Article 

    Google Scholar
     

  • Rodriguez, J. A., Grinter, D. C., Liu, Z., Palomino, R. M. & Senanayake, S. D. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 46, 1824–1841 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Meunier, F. C. et al. Synergy between metallic and oxidized Pt sites unravelled during room temperature CO oxidation on Pt/ceria. Angew. Chem. Int. Ed. 60, 3799–3805 (2021).

    Article 

    Google Scholar
     

  • Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mudiyanselage, K. et al. Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 52, 5101–5105 (2013).

    Article 

    Google Scholar
     

  • Daturi, M. et al. Evidence of a lacunar mechanism for deNOx activity in ceria-based catalysts. Phys. Chem. Chem. Phys. 3, 252–255 (2001).

    Article 

    Google Scholar
     

  • Datye, A. & Wang, Y. Atom trapping: a novel approach to generate thermally stable and regenerable single-atom catalysts. Natl Sci. Rev. 5, 630–632 (2018).

    Article 

    Google Scholar
     

  • Shyu, J. Z., Weber, W. H. & Gandhi, H. S. Surface characterization of alumina-supported ceria. J. Phys. Chem. 92, 4964–4970 (1988).

    Article 

    Google Scholar
     

  • Shyu, J. Z. et al. Characterization of Pd/γ-alumina catalysts containing ceria. J. Catal. 114, 23–33 (1988).

    Article 

    Google Scholar
     

  • Koleva, I. Z., Aleksandrov, H. A., Vayssilov, G. N., Duarte, R. & van Bokhoven, J. A. Relative stability and reducibility of CeO2 and Rh/CeO2 species on the surface and in the cavities of γ-Al2O3: a periodic DFT study. Phys. Chem. Chem. Phys. 17, 22389–22401 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Khivantsev, K. et al. Economizing on precious metals in three-way catalysts: thermally stable and highly active single-atom rhodium on ceria for NO abatement under dry and industrially relevant conditions. Angew. Chem. Int. Ed. 60, 391–398 (2021).

    Article 

    Google Scholar
     

  • Bourges, P., Lunati, S. & Mabilon, G. N2O and NO2 formation during NO reduction on precious metal catalysts. Stud. Surf. Sci. Catal. 116, 213–222 (1998).

    Article 

    Google Scholar
     

  • Getsoian, A. B., Theis, J. R., Paxton, W. A., Lance, M. J. & Lambert, C. K. Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition. Nat. Catal. 2, 614–622 (2019).

    Article 

    Google Scholar
     

  • Henderson, M. A., Perkins, C. L., Engelhard, M., Thevuthasan, S. & Peden, C. H. F. Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf. Sci. 526, 1–18 (2003).

    Article 

    Google Scholar
     

  • Kuchibhatla, S. et al. Influence of aging and environment on nanoparticle chemistry – implication to confinement effects in nanoceria. J. Phys. Chem. C 116, 14108–14114 (2012).

    Article 

    Google Scholar
     

  • Khivantsev, K., Jaegers, N. R., Kwak, J.-H., Szanyi, J. & Kovarik, L. Precise identification and characterization of catalytically active sites on the surface of γ-alumina. Angew. Chem. Int. Ed. 133, 17663–17671 (2021).

    Article 

    Google Scholar
     

  • Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mihaylov, M. Y. et al. FTIR and density functional study of NO interaction with reduced ceria: identification of \({{\rm{N}}}_{3}^{-}\) and NO2− as new intermediates in NO conversion. Appl. Catal. B: Environ. 176, 107–119 (2015).

    Article 

    Google Scholar
     

  • Mihaylov, M. Y., Ivanova, E. Z., Vayssilov, G. N. & Hadjiivanov, K. I. Revisiting ceria-NOx interaction: FTIR studies. Catal. Today 357, 613–620 (2020).

    Article 

    Google Scholar
     

  • Kašpar, J., de Leitenburg, C., Fornasiero, P., Trovarelli, A. & Graziani, M. NO reduction by CO over Rh/Al2O3. Effects of rhodium dispersion on the catalytic properties. J. Catal. 146, 136–143 (1994).

    Article 

    Google Scholar
     

  • Malecka, M. & Kepinski, L. \({{\rm{Ce}}}_{0.4}^{{\rm{III}}}{{\rm{Ce}}}_{0.6}^{{\rm{IV}}}{{\rm{AlO}}}_{3.3}\) – an unexpected product of a solid state reaction in the CeO2–Al2O3 system. CrystEngComm 17, 8282–8288 (2015).

    Article 

    Google Scholar
     

  • Skála, T., Tsud, N., Prince, K. C. & Matolín, V. Formation of alumina–ceria mixed oxide in model systems. Appl. Surf. Sci. 257, 3682–3687 (2011).

    Article 

    Google Scholar
     

  • Song, I. et al. Understanding reactivity and stability of rhodium supported on different ceria facets in catalytic NO reduction and CO/hydrocarbon oxidation reactions. Preprint at https://doi.org/10.26434/chemrxiv-2023-9ldvr-v2 (2024).

  • Schmieg, S. J. & Belton, D. N. Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst. Appl. Catal. B: Environ. 6, 127–144 (1995).

    Article 

    Google Scholar
     

  • Sayle, D. C. et al. Aging mechanisms of nanoceria and pathways for preserving optimum morphology. Nano Today 51, 101916 (2023).

    Article 

    Google Scholar
     

  • Fu, W. T. & Ijdo, D. J. W. The structure of CeAlO3 by Rietveld refinement of X-ray powder diffraction data. J. Solid State Chem. 177, 2973–2976 (2004).

    Article 

    Google Scholar
     

  • Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article 

    Google Scholar
     

  • Perdew, J. P. et al. Erratum: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993).

    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 

    Google Scholar
     

  • Migani, A., Vayssilov, G. N., Bromley, S. T., Illas, F. & Neyman, K. M. Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. J. Mater. Chem. 20, 10535–10546 (2010).

    Article 

    Google Scholar
     

  • Vayssilov, G. N., Mihaylov, M., St. Petkov, P., Hadjiivanov, K. I. & Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 115, 23435–23454 (2011).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    MathSciNet 

    Google Scholar
     

  • Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 226, 54–68 (2004).

    Article 

    Google Scholar
     

  • Pueyo Bellafont, N., Viñes, F., Hieringer, W. & Illas, F. Predicting core level binding energies shifts: suitability of the projector augmented wave approach as implemented in VASP. J. Comput. Chem. 38, 518–522 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Aleksandrov, H. Dataset for the article “Transforming ceria into 2-dimensional clusters enhances catalytic activity”. Zenodo https://doi.org/10.5281/zenodo.14030546 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments