Summers, J. C. & Ausen, S. A. Interaction of cerium oxide with noble metals. J. Catal. 58, 131–143 (1979).
Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996).
Montini, T., Melchionna, M., Monai, M. & Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987–6041 (2016).
Gorte, R. J. Ceria in catalysis: from automotive applications to the water–gas shift reaction. AIChE J 56, 1126–1135 (2010).
Rodriguez, J. A., Grinter, D. C., Liu, Z., Palomino, R. M. & Senanayake, S. D. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 46, 1824–1841 (2017).
Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).
Meunier, F. C. et al. Synergy between metallic and oxidized Pt sites unravelled during room temperature CO oxidation on Pt/ceria. Angew. Chem. Int. Ed. 60, 3799–3805 (2021).
Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).
Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).
Mudiyanselage, K. et al. Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 52, 5101–5105 (2013).
Daturi, M. et al. Evidence of a lacunar mechanism for deNOx activity in ceria-based catalysts. Phys. Chem. Chem. Phys. 3, 252–255 (2001).
Datye, A. & Wang, Y. Atom trapping: a novel approach to generate thermally stable and regenerable single-atom catalysts. Natl Sci. Rev. 5, 630–632 (2018).
Shyu, J. Z., Weber, W. H. & Gandhi, H. S. Surface characterization of alumina-supported ceria. J. Phys. Chem. 92, 4964–4970 (1988).
Shyu, J. Z. et al. Characterization of Pd/γ-alumina catalysts containing ceria. J. Catal. 114, 23–33 (1988).
Koleva, I. Z., Aleksandrov, H. A., Vayssilov, G. N., Duarte, R. & van Bokhoven, J. A. Relative stability and reducibility of CeO2 and Rh/CeO2 species on the surface and in the cavities of γ-Al2O3: a periodic DFT study. Phys. Chem. Chem. Phys. 17, 22389–22401 (2015).
Khivantsev, K. et al. Economizing on precious metals in three-way catalysts: thermally stable and highly active single-atom rhodium on ceria for NO abatement under dry and industrially relevant conditions. Angew. Chem. Int. Ed. 60, 391–398 (2021).
Bourges, P., Lunati, S. & Mabilon, G. N2O and NO2 formation during NO reduction on precious metal catalysts. Stud. Surf. Sci. Catal. 116, 213–222 (1998).
Getsoian, A. B., Theis, J. R., Paxton, W. A., Lance, M. J. & Lambert, C. K. Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition. Nat. Catal. 2, 614–622 (2019).
Henderson, M. A., Perkins, C. L., Engelhard, M., Thevuthasan, S. & Peden, C. H. F. Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf. Sci. 526, 1–18 (2003).
Kuchibhatla, S. et al. Influence of aging and environment on nanoparticle chemistry – implication to confinement effects in nanoceria. J. Phys. Chem. C 116, 14108–14114 (2012).
Khivantsev, K., Jaegers, N. R., Kwak, J.-H., Szanyi, J. & Kovarik, L. Precise identification and characterization of catalytically active sites on the surface of γ-alumina. Angew. Chem. Int. Ed. 133, 17663–17671 (2021).
Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).
Mihaylov, M. Y. et al. FTIR and density functional study of NO interaction with reduced ceria: identification of \({{\rm{N}}}_{3}^{-}\) and NO2− as new intermediates in NO conversion. Appl. Catal. B: Environ. 176, 107–119 (2015).
Mihaylov, M. Y., Ivanova, E. Z., Vayssilov, G. N. & Hadjiivanov, K. I. Revisiting ceria-NOx interaction: FTIR studies. Catal. Today 357, 613–620 (2020).
Kašpar, J., de Leitenburg, C., Fornasiero, P., Trovarelli, A. & Graziani, M. NO reduction by CO over Rh/Al2O3. Effects of rhodium dispersion on the catalytic properties. J. Catal. 146, 136–143 (1994).
Malecka, M. & Kepinski, L. \({{\rm{Ce}}}_{0.4}^{{\rm{III}}}{{\rm{Ce}}}_{0.6}^{{\rm{IV}}}{{\rm{AlO}}}_{3.3}\) – an unexpected product of a solid state reaction in the CeO2–Al2O3 system. CrystEngComm 17, 8282–8288 (2015).
Skála, T., Tsud, N., Prince, K. C. & Matolín, V. Formation of alumina–ceria mixed oxide in model systems. Appl. Surf. Sci. 257, 3682–3687 (2011).
Song, I. et al. Understanding reactivity and stability of rhodium supported on different ceria facets in catalytic NO reduction and CO/hydrocarbon oxidation reactions. Preprint at https://doi.org/10.26434/chemrxiv-2023-9ldvr-v2 (2024).
Schmieg, S. J. & Belton, D. N. Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst. Appl. Catal. B: Environ. 6, 127–144 (1995).
Sayle, D. C. et al. Aging mechanisms of nanoceria and pathways for preserving optimum morphology. Nano Today 51, 101916 (2023).
Fu, W. T. & Ijdo, D. J. W. The structure of CeAlO3 by Rietveld refinement of X-ray powder diffraction data. J. Solid State Chem. 177, 2973–2976 (2004).
Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).
Perdew, J. P. et al. Erratum: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Migani, A., Vayssilov, G. N., Bromley, S. T., Illas, F. & Neyman, K. M. Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. J. Mater. Chem. 20, 10535–10546 (2010).
Vayssilov, G. N., Mihaylov, M., St. Petkov, P., Hadjiivanov, K. I. & Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 115, 23435–23454 (2011).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 226, 54–68 (2004).
Pueyo Bellafont, N., Viñes, F., Hieringer, W. & Illas, F. Predicting core level binding energies shifts: suitability of the projector augmented wave approach as implemented in VASP. J. Comput. Chem. 38, 518–522 (2017).
Aleksandrov, H. Dataset for the article “Transforming ceria into 2-dimensional clusters enhances catalytic activity”. Zenodo https://doi.org/10.5281/zenodo.14030546 (2024).