Thursday, January 16, 2025
No menu items!
HomeNatureTransducing chemical energy through catalysis by an artificial molecular motor

Transducing chemical energy through catalysis by an artificial molecular motor

  • Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, J. Protein power strokes. Curr. Biol. 16, R517–R519 (2006).

    Article 

    Google Scholar
     

  • Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hoffmann, P. M. How molecular motors extract order from chaos (a key issues review). Rep. Prog. Phys. 79, 032601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hwang, W. & Karplus, M. Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc. Natl Acad. Sci. USA 116, 19777–19785 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amano, S. et al. Using catalysis to drive chemistry away from equilibrium: relating kinetic asymmetry, power strokes and the Curtin–Hammett principle in Brownian ratchets. J. Am. Chem. Soc. 144, 20153–20164 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sweeney, H. L. & Houdusse, A. Structural and functional insights into the Myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. 63, e202306569 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. Molecular ratchets and kinetic asymmetry: giving chemistry direction. Angew. Chem. Int. Ed. 63, e202400495 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schwarz, P. S., Tena-Solsona, M., Dai, K. & Boekhoven, J. Carbodiimide-fuelled catalytic reaction cycles to regulate supramolecular processes. Chem. Commun. 58, 1284–1297 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sangchai, T., Al Shehimy, S., Penocchio, E. & Ragazzon, G. Artificial molecular ratchets: tools enabling endergonic processes. Angew. Chem. Int. Ed. 62, e202309501 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, L. et al. An electric molecular motor. Nature 613, 280–286 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Berreur, J. et al. Redox-powered autonomous unidirectional rotation about a C–C bond under enzymatic control. Preprint at https://doi.org/10.26434/chemrxiv-2024-tz8vc (2024).

  • Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Feng, L. et al. Active mechanisorption driven by pumping cassettes. Science 374, 1215–1221 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Thomas, D. et al. Pumping between phases with a pulsed-fuel molecular ratchet. Nat. Nanotechnol. 17, 701–707 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Corra, S. et al. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nat. Nanotechnol. 17, 746–751 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Binks, L. et al. The role of kinetic asymmetry and power strokes in an information ratchet. Chem 9, 2902–2917 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Perrot, A., Wang, W.-Z., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels through rotation of light-driven molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. Chemical fuels for molecular machinery. Nat. Chem. 14, 728–738 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liang, L. & Astruc, D. The copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) ‘click’ reaction and its applications. An overview. Coord. Chem. Rev. 255, 2933–2945 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Hagel, J., Haraszti, T. & Boehm, H. Diffusion and interaction in PEG-DA hydrogels. Biointerphases 8, 36 (2013).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Yavari, N. & Azizian, S. Mixed diffusion and relaxation kinetics model for hydrogels swelling. J. Mol. Liq. 363, 119861 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Goujon, A. et al. Bistable [c2] daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139, 14825–14828 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colard-Itté, J.-R. et al. Mechanical behaviour of contractile gels based on light-driven molecular motors. Nanoscale 11, 5197–5202 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Sakai, T. et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ashbridge, Z. et al. Knotting matters: orderly molecular entanglements. Chem. Soc. Rev. 51, 7779–7809 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baiesi, M., Orlandini, E. & Whittington, S. G. Interplay between writhe and knotting for swollen and compact polymers. J. Chem. Phys. 131, 154902 (2009).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hu, L., Zhang, Q., Li, X. & Serpe, M. J. Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 6, 1774–1793 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Howse, J. R. et al. Reciprocating power generation in a chemically driven synthetic muscle. Nano Lett. 6, 73–77 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruns, C. J. Moving forward in the semantic soup of artificial molecular machine taxonomy. Nat. Nanotechnol. 17, 1231–1234 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments