Thursday, October 23, 2025
No menu items!
HomeNatureTranscriptional interferences ensure one olfactory receptor per ant neuron

Transcriptional interferences ensure one olfactory receptor per ant neuron

  • Hanchate, N. K. et al. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 350, 1251–1255 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, L., Li, Q. & Xie, X. S. Olfactory sensory neurons transiently express multiple olfactory receptors during development. Mol. Syst. Biol. 11, 844 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuss, S. H. & Ray, A. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates. Mol. Cell. Neurosci. 41, 101–112 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Barnes, I. H. A. et al. Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding regions split across two exons. BMC Genom. 21, 196 (2020).

    CAS 

    Google Scholar
     

  • Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Markenscoff-Papadimitriou, E. et al. Enhancer interaction networks as a means for singular olfactory receptor expression. Cell 159, 543–557 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalton, R. P., Lyons, D. B. & Lomvardas, S. Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155, 321–332 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Pourmorady, A. D. et al. RNA-mediated symmetry breaking enables singular olfactory receptor choice. Nature 625, 181–188 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalton, R. P. & Lomvardas, S. Chemosensory receptor specificity and regulation. Annu. Rev. Neurosci. 38, 331–349 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • McLaughlin, C. N. et al. Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. eLife 10, e63856 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mermet, J. et al. Multilayer regulation underlies the functional precision and evolvability of the olfactory system. Preprint at bioRxiv https://doi.org/10.1101/2025.01.16.632932 (2025).

  • Tichy, A. L., Ray, A. & Carlson, J. R. A new Drosophila POU gene, pdm3, acts in odor receptor expression and axon targeting of olfactory neurons. J. Neurosci. 28, 7121–7129 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. A functionally conserved gene regulatory network module governing olfactory neuron diversity. PLoS Genet. 12, e1005780 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo, K., Aoki, T., Yoda, Y., Kimura, K.-I. & Hama, C. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat. Neurosci. 10, 153–160 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Ray, A., van Naters, W., van der, G., Shiraiwa, T. & Carlson, J. R. Mechanisms of odor receptor gene choice in Drosophila. Neuron 53, 353–369 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, H. et al. An engineered orco mutation produces aberrant social behavior and defective neural development in ants. Cell 170, 736–747 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenzie, S. K. & Kronauer, D. J. C. The genomic architecture and molecular evolution of ant odorant receptors. Genome Res. 28, 1757–1765 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pask, G. M. et al. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nat. Commun. 8, 297 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slone, J. D. et al. Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. Proc. Natl Acad. Sci. USA 114, 8586–8591 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brahma, A. et al. Transcriptional and post-transcriptional control of odorant receptor choice in ants. Curr. Biol. 33, 5456–5466 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sieriebriennikov, B. et al. Orco-dependent survival of odorant receptor neurons in ants. Sci. Adv. 10, eadk9000 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mika, K. et al. Olfactory receptor-dependent receptor repression in Drosophila. Sci. Adv. 7, eabe3745 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber, A. J. et al. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 26, 1145–1159 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y., Zhang, H.-W., Wu, X.-X. & Zhang, Y. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature 628, 887–893 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvo-Roitberg, E. et al. Challenges in identifying mRNA transcript starts and ends from long-read sequencing data. Genome Res. 34, 1719–1734 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohler, U., Liao, G.-C., Niemann, H. & Rubin, G. M. Computational analysis of core promoters in the Drosophila genome. Genome Biol. 3, R87 (2002).


    Google Scholar
     

  • FitzGerald, P. C., Sturgill, D., Shyakhtenko, A., Oliver, B. & Vinson, C. Comparative genomics of Drosophila and human core promoters. Genome Biol. 7, R53 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vo Ngoc, L., Cassidy, C. J., Huang, C. Y., Duttke, S. H. C. & Kadonaga, J. T. The human initiator is a distinct and abundant element that is precisely positioned in focused core promoters. Genes Dev. 31, 6–11 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieriebriennikov, B., Reinberg, D. & Desplan, C. A molecular toolkit for superorganisms. Trends Genet. 37, 846–859 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greger, I. H. & Proudfoot, N. J. Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J. 17, 4771–4779 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hainer, S. J., Pruneski, J. A., Mitchell, R. D., Monteverde, R. M. & Martens, J. A. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev. 25, 29–40 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greger, I. H., Aranda, A. & Proudfoot, N. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 8415–8420 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. Epigenet. Chromatin 7, 33 (2014).


    Google Scholar
     

  • Makalowska, I., Lin, C.-F. & Makalowski, W. Overlapping genes in vertebrate genomes. Comput. Biol. Chem. 29, 1–12 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Rosa, S., Duncan, S. & Dean, C. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiefer, L. et al. WAPL functions as a rheostat of protocadherin isoform diversity that controls neural wiring. Science 380, eadf8440 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobson, D. J., Wei, W., Steinmetz, L. M. & Svejstrup, J. Q. RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48, 365–374 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Evolutionary process underlying receptor gene expansion and cellular divergence of olfactory sensory neurons in honeybees. Mol. Biol. Evol. 42, msaf080 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prieto-Godino, L. L. et al. Evolution of acid-sensing olfactory circuits in drosophilids. Neuron 93, 661–676 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y.-C. A. et al. Cutoff suppresses RNA polymerase II termination to ensure expression of piRNA precursors. Mol. Cell 63, 97–109 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sieber, K. et al. Embryo injections for CRISPR-mediated mutagenesis in the ant Harpegnathos saltator. J. Vis. Exp. https://doi.org/10.3791/61930 (2021).

  • Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. Mol. Cell 56, 708–716 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3’ end modification. Nucleic Acids Res. 47, 2630–2640 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Y., Wu, P.-H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genom. 19, 531 (2018).


    Google Scholar
     

  • Ibrahim, F., Oppelt, J., Maragkakis, M. & Mourelatos, Z. TERA-seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res. 49, e115 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430–442 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niimura, Y. & Nei, M. Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice. Gene 346, 13–21 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Shields, E. J., Sheng, L., Weiner, A. K., Garcia, B. A. & Bonasio, R. High-quality genome assemblies reveal long non-coding RNAs expressed in ant brains. Cell Rep. 23, 3078–3090 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez-Diaz, C., Martin, F., Garcia-Fernandez, J. M. & Alcorta, E. The two main olfactory receptor families in Drosophila, ORs and IRs: acomparative approach. Front. Cell. Neurosci. 12, 253 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).

  • Gospocic, J. et al. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 184, 5807–5823 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In Proc. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 (IEEE, 2019).

  • Hoskins, R. A. et al. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res. 21, 182–192 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments