IPCC Aviation and the Global Atmosphere (eds Penner, J. E. et al.) (Cambridge Univ. Press, 1999).
Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 117834 (2021).
Nguyen, N., Bittker, D. & Niedzwiecki, R. Investigation of low NOx staged combustor concept in high-speed civil transport engines. In Proc. American Institute of Aeronautics and Astronautics, 25th Joint Propulsion Conference (AIAA, 1989).
Kyprianidis, K. G. & Dahlquist, E. On the trade-off between aviation and energy efficiency. Appl. Energy 185, 1506–1516 (2017).
Freeman, S., Lee, D. S., Lim, L. L., Skowron, A. & De León, R. R. Trading off aircraft fuel burn and NOx emissions for optimal climate policy. Environ. Sci. Technol. 52, 2498–2505 (2018).
Teoh, R., Schumann, U., Majumdar, A. & Stettler, M. E. Mitigating the climate forcing of aircraft contrails by small-scale diversions and technology adoption. Environ. Sci. Technol. 54, 2941–2950 (2020).
Voigt, C. et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Commun. Earth Environ. 2, 114 (2021).
Teoh, R. et al. Targeted use of sustainable aviation fuel to maximize climate benefits. Environ. Sci. Technol. 56, 17246–17255 (2022).
Hofer, S., Gierens, K. & Rohs, S. How well can persistent contrails be predicted? An update. Atmos. Chem. Phys. 24, 7911–7925 (2024).
Martin Frias, A. et al. Feasibility of contrail avoidance in a commercial flight planning system: an operational analysis. Environ. Res. Infrastruct. Sustain. 4, 015013 (2024).
Märkl, R. S. et al. Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails. Atmos. Chem. Phys. 24, 3813–3837 (2024).
Quante, G., Voß, S., Bullerdiek, N., Voigt, C. & Kaltschmitt, M. Hydroprocessing of fossil fuel-based aviation kerosene – Technology options and climate impact mitigation potentials. Atmos. Environ. X 22, 100259 (2024).
Reisinger, A., Meinshausen, M., Manning, M. & Bodeker, G. Uncertainties of global warming metrics: CO2 and CH4. Geophys. Res. Lett. 37, L14707 (2010).
Hodnebrog, Ø. et al. Updated global warming potentials and radiative efficiencies of halocarbons and other weak atmospheric absorbers. Rev. Geophys. 58, e2019RG000691 (2020).
Teoh, R. et al. Global aviation contrail climate effects from 2019 to 2021. Atmos. Chem. Phys. 24, 6071–6093 (2024).
Holmes, C. D., Tang, Q. & Prather, M. J. Uncertainties in climate assessment: the case of aviation NOx. Proc. Natl Acad. Sci. USA 108, 10997–11002 (2011).
Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).
Thornhill, G. D. et al. Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmos. Chem. Phys. 21, 853–874 (2021).
Gettelman, A. & Chen, C. The climate impact of aviation aerosols. Geophys. Res. Lett. 40, 2785–2789 (2013).
Penner, J. E., Zhou, C., Garnier, A. & Mitchell, D. L. Anthropogenic aerosol indirect effects in cirrus clouds. J. Geophys. Res. Atmos. 123, 11,652–11,677 (2018).
Righi, M., Hendricks, J. & Beer, C. G. Exploring the uncertainties in the aviation soot–cirrus effect. Atmos. Chem. Phys. 21, 17267–17289 (2021).
Zhu, J. et al. Decreased aviation leads to increased ice crystal number and a positive radiative effect in cirrus clouds. AGU Adv. 3, e2021AV000546 (2022).
Gross, S. et al. Investigating an indirect aviation effect on mid-latitude cirrus clouds – linking lidar-derived optical properties to in situ measurements. Atmos. Chem. Phys. 23, 8369–8381 (2023).
Unterstrasser, S. & Gierens, K. Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth. Atmos. Chem. Phys. 10, 2037–2051 (2010).
Schumann, U. et al. Properties of individual contrails: a compilation of observations and some comparisons. Atmos. Chem. Phys. 17, 403–438 (2017).
Chen, C.-C. & Gettelman, A. Simulated 2050 aviation radiative forcing from contrails and aerosols. Atmos. Chem. Phys. 16, 7317–7333 (2016).
Teoh, R. et al. Aviation contrail climate effects in the North Atlantic from 2016 to 2021. Atmos. Chem. Phys. 22, 10919–10935 (2022).
Schumann, U. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the AERONOX project. Atmos. Environ. 31, 1723–1733 (1997).
Terrenoire, E. et al. Impact of present and future aircraft NOx and aerosol emissions on atmospheric composition and associated direct radiative forcing of climate. Atmos. Chem. Phys. 22, 11987–12023 (2022).
Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).
Szopa, S. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 817–922 (Cambridge Univ. Press, 2021).
Stordal, F. et al. Tradeoffs in climate effects through aircraft routing: forcing due to radiatively active gases. Atmos. Chem. Phys. Discuss. 6, 10733–10771 (2006).
Deuber, O., Sigrun, M., Sausen, R., Ponater, M. & Ling, L. A physical metric-based framework for evaluating the climate trade-off between CO2 and contrails—The case of lowering aircraft flight trajectories. Environ. Sci. Policy 25, 176–185 (2013).
Fuglestvedt, J. S. et al. Metrics of climate change: assessing radiative forcing and emission indices. Clim. Change 58, 267–331 (2003).
Shine, K. P., Fuglestvedt, J. S., Hailemariam, K. & Stuber, N. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Change 68, 281–302 (2005).
Allen, M. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).
Cain, M. et al. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Clim. Atmos. Sci. 2, 29 (2019).
Shine, K. P., Derwent, R. G., Wuebbles, D. J. & Morcrette, J. J. in Climate Change: The IPCC Scientific Assessment by Working Group 1 (eds Houghton J. T. et al.) Ch. 2 (Cambridge Univ. Press, 1990).
Fuglestvedt, J. S. et al. Transport impacts on atmosphere and climate: metrics. Atmos. Environ. 44, 4648–4677 (2010).
Irvine, E. A., Hoskins, B. J. & Shine K. P. A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/6/064021 (2014).
Schumann, U., Graf, K. & Mannstein, H. Potential to reduce the climate impact of aviation by flight level changes. In Proc. 3rd AIAA Atmospheric Space Environments Conference (AIAA, 2011).
Megill, L., Deck, K. & Grewe, V. Alternative climate metrics to the global warming potential are more suitable for assessing aviation non-CO2 effects. Commun. Earth Environ. 5, 249 (2024).
Arriolabengoa, S. et al. Lightweight climate models could be useful for assessing aviation mitigation strategies and moving beyond the CO2-equivalence metrics debate. Commun. Earth Environ. 5, 716 (2024).
Borella, A. et al. The importance of an informed choice of CO2-equivalence metrics for contrail avoidance. Atmos. Chem. Phys. 24, 9401–9417 (2024).
Prather, M. J. & Zhu, X. Lifetimes and timescales of tropospheric ozone. Elem. Sci. Anthropocene 12, 00112 (2024).
Stuber, N., Foster, P., Radel, G. & Shine, K. P. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing. Nature 441, 864–867 (2006).
Lee, D. S. et al. Uncertainties in mitigating aviation non-CO2 emissions for climate and air quality using hydrocarbon fuels. Environ. Sci. Atmos. 3, 1693 (2023).
Harlass, T. et al. Measurement report: in-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel. Atmos. Chem. Phys. 24, 11807–11822 (2024).
IPCC Climate Change 2023: Synthesis Report (eds Lee, H. & Romero, J.) (IPCC, 2023).
Skowron, A. et al. Greater fuel efficiency is potentially preferable to reducing NOx emissions for aviation’s climate impacts. Nat. Commun. 12, 564 (2021).
Prather, M. J., Holmes, C. D. & Hsu, J. Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 39, L09803 (2012).
Quadros, F. D. A., Snellen, M., Sun, J. & Dedoussi, I. C. Global civil aviation emissions estimates for 2017–2020 using ADS-B data. J. Aircr. 59, 1394–1405 (2022).
Prather, M. J., Guo, H. & Zhu, X. Deconstruction of tropospheric chemical reactivity using aircraft measurements: the ATom data. Earth Syst. Sci. Data 15, 3299–3349 (2023).
Holmes, C. D., Prather, M. J. & Vinken, G. C. M. The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry. Atmos. Chem. Phys. 14, 6801–6812 (2014).
Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).