Buchmann, J. A. Introduction to Cryptography (Springer, 2004).
Eastlake, D. E. 3rd, Crocker, S. & Schiller, J. I. Randomness Requirements for Security. Request for Comments 4086 (Internet Engineering Task Force, 2005).
Stone, P. Why lotteries are just. J. Polit. Philos. 15, 276–295 (2007).
Duxbury, N. Random Justice: On Lotteries and Legal Decision-Making (Oxford Univ. Press, 1999).
Menezes, A. J., Van Oorschot, P. C. & Vanstone, S. A. Handbook of Applied Cryptography 1st edn (CRC, 2018).
Bierhorst, P. et al. Experimentally generated randomness certified by the impossibility of superluminal signals. Nature 556, 223–226 (2018).
Liu, Y. et al. Device-independent quantum random-number generation. Nature 562, 548–551 (2018).
Colbeck, R. Quantum and relativistic protocols for secure multi-party computation. Preprint at https://arxiv.org/abs/0911.3814 (2011).
Pironio, S. et al. Random numbers certified by Bell’s theorem. Nature 464, 1021–1024 (2010).
CURBy CU Randomness Beacon (University of Colorado Boulder, 2024); https://random.colorado.edu/
Bosley, C. & Dodis, Y. in Theory of Cryptography Vol. 4392 (ed. Vadhan, S. P.) 1–20 (Springer, 2007).
Stipčević, M. & Koç, Ç. K. in Open Problems in Mathematics and Computational Science (ed. Koç, Ç. K.) 275–315 (Springer, 2014).
Aaronson, S. & Hung, S.-H. Certified randomness from quantum supremacy. In Proc. 55th Annual ACM Symposium on Theory of Computing (eds Saha, B. & Servedio, R. A.) 933–944 (ACM, 2023).
Koç, Ç. K. (ed.) Cryptographic Engineering (Springer, 2009).
Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).
Rabin, M. O. Transaction protection by beacons. J. Comput. Syst. Sci. 27, 256–267 (1983).
Kelsey, J., Brandão, L. T. A. N., Peralta, R. & Booth, H. A reference for randomness beacons. Preprint at https://doi.org/10.6028/NIST.IR.8213-draft (2019).
Bonneau, J., Clark, J. & Goldfeder, S. On bitcoin as a public randomness source. Preprint at https://eprint.iacr.org/2015/1015 (2015).
Syta, E. et al. Scalable bias-resistant distributed randomness. In Proc. 2017 IEEE Symposium on Security and Privacy (SP) (ed. Butler, K. R. B.) 444–460 (IEEE, 2017).
Fischer, M. J., Iorga, M. & Peralta, R. A public randomness service. In Proc. International Conference on Security and Cryptography (eds Lopez, J. & Samarati, P.) 434–438 (IEEE, 2011).
Micali, S., Rabin, M. & Vadhan, S. Verifiable random functions. In Proc. 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039) (ed. Mitsenmacher, M.) 120–130 (IEEE, 1999).
Gras, G., Martin, A., Choi, J. W. & Bussières, F. Quantum entropy model of an integrated quantum-random-number-generator chip. Phys. Rev. Appl. 15, 054048 (2021).
Abellán, C., Amaya, W., Mitrani, D., Pruneri, V. & Mitchell, M. W. Generation of fresh and pure random numbers for loophole-free Bell tests. Phys. Rev. Lett. 115, 250403 (2015).
Soucarros, M., Canovas-Dumas, C., Clediere, J., Elbaz-Vincent, P. & Real, D. Influence of the temperature on true random number generators. In Proc. 2011 IEEE International Symposium on Hardware-Oriented Security and Trust (eds Schaumont, P. & Karri, R.) 24–27 (IEEE, 2011).
Ragab, H., Milburn, A., Razavi, K., Bos, H. & Giuffrida, C. Crosstalk: speculative data leaks across cores are real. In Proc. 2021 IEEE Symposium on Security and Privacy (SP) (eds Oprea, A. & Holz, T.) 1852–1867 (IEEE, 2021).
Shalm, L. K. et al. Device-independent randomness expansion with entangled photons. Nat. Phys. 17, 452–456 (2021).
Li, M.-H. et al. Experimental realization of device-independent quantum randomness expansion. Phys. Rev. Lett. 126, 050503 (2021).
Liu, W.-Z. et al. Device-independent randomness expansion against quantum side information. Nat. Phys. 17, 448–451 (2021).
Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).
Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
Rosenfeld, W. et al. Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017).
Storz, S. et al. Loophole-free Bell inequality violation with superconducting circuits. Nature 617, 265–270 (2023).
Zhang, Y., Knill, E. & Bierhorst, P. Certifying quantum randomness by probability estimation. Phys. Rev. A 98, 040304 (2018).
Dupuis, F., Fawzi, O. & Renner, R. Entropy accumulation. Commun. Math. Phys. 379, 867–913 (2020).
Ma, X. et al. Postprocessing for quantum random-number generators: entropy evaluation and randomness extraction. Phys. Rev. A 87, 062327 (2013).
Trevisan, L. Extractors and pseudorandom generators. J. ACM 48, 860–879 (2001).
Mauerer, W., Portmann, C. & Scholz, V. B. A modular framework for randomness extraction based on Trevisan’s construction. Preprint at https://arxiv.org/abs/1212.0520 (2012).
Zhang, Y. et al. Experimental low-latency device-independent quantum randomness. Phys. Rev. Lett. 124, 010505 (2020).
Lamport, L. Password authentication with insecure communication. Commun. ACM 24, 770–772 (1981).
Dworkin, M. J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. Technical Report NIST FIPS 202 (National Institute of Standards and Technology, 2015).
Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to Algorithms 3rd edn (MIT Press, 2009).
Thulasiraman, K. & Swamy, M. N. S. Graphs: Theory and Algorithms (Wiley, 2011).
Gailly, N. et al. drand/drand: A Distributed Randomness Beacon Daemon – Go implementation. GitHub https://github.com/drand/drand (2024).
Grassi, P. A., Garcia, M. E. & Fenton, J. L. Digital Identity Guidelines: Revision 3. Technical Report NIST SP 800-63-3 (National Institute of Standards and Technology, 2017).
Benet, J. IPFS – content addressed, versioned, P2P file system, Preprint at https://arxiv.org/abs/1407.3561 (2014).
Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).
Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Philos. Trans. R. Soc. A 361, 1655–1674 (2003).
Chambers, C. D. & Tzavella, L. The past, present and future of Registered Reports. Nat. Hum. Behav. 6, 29–42 (2021).
Gheorghiu, A. & Vidick, T. Computationally-secure and composable remote state preparation. In Proc. 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS) (ed. Zuckerman, D.) 1024–1033 (2019).
Cojocaru, A., Colisson, L., Kashefi, E. & Wallden, P. QFactory: classically-instructed remote secret qubits preparation. In Proc. Advances in Cryptology – ASIACRYPT 2019 (eds Galbraith, S. D. & Moriai, S.) 615–645 (Springer, 2019).
Mahadev, U. Classical verification of quantum computations. In Proc. 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) 259–267 (IEEE, 2018).
Zhu, D. et al. Interactive cryptographic proofs of quantumness using mid-circuit measurements. Nat. Phys. 19, 1725–1731 (2023).
Brakerski, Z., Christiano, P., Mahadev, U., Vazirani, U. & Vidick, T.A cryptographic test of quantumness and certifiable randomness from a single quantum device. J. ACM 68, 31 (2021).