Saturday, April 19, 2025
No menu items!
HomeNatureTowards multimodal foundation models in molecular cell biology

Towards multimodal foundation models in molecular cell biology

  • Alberts, B. et al. Molecular Biology of the Cell 6th edn (W. W. Norton, 2020).

  • Keller, E. F. Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines (Harvard Univ. Press, 2002).

  • Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004). A seminal review on network biology, elucidating how molecular interactions shape cellular and organismal function.

    Article 
    PubMed 

    Google Scholar
     

  • Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldberg, A. P. et al. Emerging whole-cell modeling principles and methods. Curr. Opin. Biotechnol. 51, 97–102 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, G. T. et al. Building the next generation of virtual cells to understand cellular biology. Biophys. J. 122, 3560–3569 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karr, J. R., Takahashi, K. & Funahashi, A. The principles of whole-cell modeling. Curr. Opin. Microbiol. 27, 18–24 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freddolino, P. L. & Tavazoie, S. The dawn of virtual cell biology. Cell 150, 248–250 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Georgouli, K., Yeom, J.-S., Blake, R. C. & Navid, A. Multi-scale models of whole cells: progress and challenges. Front. Cell Dev. Biol. 11, 1260507 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017). The potential of multi-omics in uncovering molecular underpinnings of diseases and informing precision medicine.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regev, A. et al. Science Forum: the Human Cell Atlas. eLife https://doi.org/10.7554/eLife.27041 (2017). An introduction of the HCA initiative, a pivotal project for mapping cellular diversity across human tissues.

  • Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021). An overview of the concept, opportunities and challenges of foundation models for diverse artificial intelligence applications.

  • Vaswani, A. et al. Attention is all you need. Preprint at https://arxiv.org/abs/1706.03762 (2017). An introduction of the transformer architecture, the cornerstone of modern foundation models.

  • Brown, T. et al. Language models are few-shot learners. In Proc. 34th International Conference on Neural Information Processing Systems 1877–1901 (Curran Associates Inc., 2020). An introduction of GPT-3, a 175-billion parameter language model demonstrating strong few-shot learning capabilities across diverse natural language processing tasks.

  • Ouyang, L. et al. Training language models to follow instructions with human feedback. In Proc. 36th International Conference on Neural Information Processing Systems 27730–27744 (Curran Associates Inc., 2022).

  • Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023). An introduction to LLaMA, a suite of open-source language models (7B to 65B parameters) trained on publicly available data.

  • Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).

  • llama3: The official meta Llama 3 GitHub site. GitHub https://github.com/meta-llama/llama3 (2024).

  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution image synthesis with latent diffusion models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 10674–10685 (IEEE/CVF, 2022).

  • Podell, D. et al. SDXL: improving latent diffusion models for high-resolution image synthesis. Preprint at https://arxiv.org/abs/2307.01952 (2023).

  • Blattmann, A. et al. Stable video diffusion: scaling latent video diffusion models to large datasets. Preprint at https://arxiv.org/abs/2311.15127 (2023).

  • Liu, H., Li, C., Wu, Q. & Lee, Y. J. Visual instruction tuning. In Proc. 37th International Conference on Neural Information Processing Systems 34892–34916 (Curran Associates Inc., 2023).

  • Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R., Li, L., Xu, Y. & Yang, J. Erratum to: Machine learning meets omics applications and perspectives. Brief. Bioinform. 23, bbab560 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Klein, D. et al. Mapping cells through time and space with moscot. Nature 638, 1065–1075 (2025).

  • Brbić, M. et al. MARS: discovering novel cell types across heterogeneous single-cell experiments. Nat. Methods 17, 1200–1206 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Brbić, M. et al. Annotation of spatially resolved single-cell data with STELLAR. Nat. Methods 19, 1411–1418 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lotfollahi, M. et al. Predicting cellular responses to complex perturbations in high-throughput screens. Mol. Syst. Biol. 19, e11517 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2024). A deep learning model integrating gene–gene relationship knowledge graphs to predict transcriptional responses.

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). An introduction to AlphaFold, a deep learning model achieving near-experimental accuracy in predicting protein structures.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Z. et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. Preprint at bioRxiv https://doi.org/10.1101/2022.07.20.500902 (2022).

  • ESM3: simulating 500 million years of evolution with a language model. EvolutionaryScale https://www.evolutionaryscale.ai/blog/esm3-release (2024). A frontier language model for biology that simultaneously reasons over the sequence, structure and function of proteins.

  • Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, H. et al. scGPT: towards building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024). The development of scGPT, a generative pre-trained transformer model, leveraging over 33 million single-cell datasets to advance single-cell biology.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023). A large model pretrained on 30 million single-cell transcriptomes, facilitating accurate predictions in gene network biology.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852–866 (2022).

    Article 

    Google Scholar
     

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sverchkov, Y. & Craven, M. A review of active learning approaches to experimental design for uncovering biological networks. PLoS Comput. Biol. 13, e1005466 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, A., Ivanova, D. R., Malik, I. & Rainforth, T. Deep adaptive design: amortizing sequential Bayesian experimental design. In Proc. 38th International Conference on Machine Learning Vol. 139 3384–3395 (PMLR, 2021).

  • Rainforth, T., Foster, A., Ivanova, D. R. & Smith, F. B. Modern Bayesian experimental design. Statist. Sci. 39, 100–114 (2024).

  • Vanlier, J., Tiemann, C. A., Hilbers, P. A. J. & van Riel, N. A. W. A Bayesian approach to targeted experiment design. Bioinformatics 28, 1136–1142 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eyler, C. E. et al. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 21, 174 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battich, N. et al. Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science 367, 1151–1156 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the dynamics of gene expression in single cells. Nat. Biotechnol. 38, 980–988 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, Q. et al. Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq. Nat. Methods 17, 991–1001 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711.e45 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. V. DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome. Bioinformatics 37, 2112–2120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z. et al. DNABERT-2: efficient foundation model and benchmark for multi-species genome. Preprint at https://arxiv.org/abs/2306.15006 (2023).

  • Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380–D386 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database 2015, bav095 (2015).

  • Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, Q. et al. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol. 21, 32 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol. Cell 83, 373–392 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bunne, C. et al. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 20, 1759–1768 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hetzel, L. et al. Predicting cellular responses to novel drug perturbations at a single-cell resolution. In Proc. 36th International Conference on Neural Information Processing Systems 26711–26722 (Curran Associates Inc., 2022).

  • Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229.e26 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Replogle, J. M. et al. Mapping information-rich genotype–phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 48, D882–D889 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stunnenberg, H. G., International Human Epigenome Consortium & Hirst, M. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell 167, 1897 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabula Muris Consortium. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CZI Single-Cell Biology Program et al. CZ CELL×GENE Discover: a single-cell data platform for scalable exploration, analysis and modeling of aggregated data. Nucleic Acids Res. 53, D886–D900 (2025).

  • Chameleon Team. Chameleon: mixed-modal early-fusion foundation models. Preprint at https://arxiv.org/abs/2405.09818 (2024).

  • Gage, P. A new algorithm for data compression. C Users J. Arch. 12, 23–38 (1994).


    Google Scholar
     

  • OpenAI et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).

  • Barnum, G., Talukder, S. & Yue, Y. On the benefits of early fusion in multimodal representation learning. Preprint at https://arxiv.org/abs/2011.07191 (2020). An investigation into early-fusion strategies in multimodal learning, demonstrating that immediate integration of inputs enhances model performance and robustness.

  • Liu, Z. et al. Swin Transformer: hierarchical vision transformer using Shifted Windows. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 9992–10002 (IEEE/CVF, 2021).

  • Fan, H. et al. Multiscale vision transformers. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 6804–6815 (IEEE/CVF, 2021).

  • Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 4171–4186 (Association for Computational Linguistics, 2019).

  • Grill, J.-B. et al. Bootstrap your own latent—a new approach to self-supervised learning. In Proc. 34th International Conference on Neural Information Processing Systems 21271–21284 (Curran Associates Inc., 2020).

  • Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning Vol. 119 (eds. Iii, H. D. & Singh, A.) 1597–1607 (PMLR, 2020).

  • Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th International Conference on Machine Learning Vol. 139 8748–8763 (PMLR, 2021).

  • AlQuraishi, M. & Sorger, P. K. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nat. Methods 18, 1169–1180 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, S. et al. Unifying large language models and knowledge graphs: a roadmap. IEEE Trans. Knowl. Data Eng. 36, 3580–3599 (2024).

  • Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (Association for Computing Machinery, 2016).

  • Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. In Proc. 31st International Conference on Neural Information Processing Systems 1–19 (Curran Associates Inc., 2017).

  • Zhao, W. X., Liu, J., Ren, R. & Wen, J.-R. Dense text retrieval based on pretrained language models: a survey. ACM Trans. Inf. Syst. Secur. 42, 1–60 (2024).


    Google Scholar
     

  • Jeong, J. et al. Multimodal image-text matching improves retrieval-based chest X-ray report generation. In Proc. Machine Learning Research. Medical Imaging with Deep Learning Vol. 227 (eds Oguz, I. et al.) 978–990 (PMLR, 2024).

  • Luo, R. et al. BioGPT: generative pre-trained transformer for biomedical text generation and mining. Brief. Bioinform. 23, bbac409 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Singhal, K. et al. Large language models encode clinical knowledge. Nature 620, 172–180 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, L. et al. ProLLaMA: a protein large language model for multi-task protein language processing. Preprint at https://arxiv.org/abs/2402.16445 (2024).

  • Debus, C., Piraud, M., Streit, A., Theis, F. & Götz, M. Reporting electricity consumption is essential for sustainable AI. Nat. Mach. Intell. 5, 1176–1178 (2023).

    Article 

    Google Scholar
     

  • Hu, E. J. et al. LoRA: low-rank adaptation of large language models. Preprint at https://arxiv.org/abs/2106.09685 (2021).

  • Pfeiffer, J. et al. AdapterHub: a framework for adapting transformers. In Proc. 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations 46–54 (Association for Computational Linguistics, 2020).

  • Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, P. & Saez-Rodriguez, J. Advances in systems biology modeling: 10 years of crowdsourcing DREAM challenges. Cell Syst. 12, 636–653 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saez-Rodriguez, J. et al. Crowdsourcing biomedical research: leveraging communities as innovation engines. Nat. Rev. Genet. 17, 470–486 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lance, C. et al. Multimodal single cell data integration challenge: results and lessons learned. In Proc. NeurIPS 2021 Competitions and Demonstrations Track Vol. 176 (eds Kiela, D., Ciccone, M. & Caputo, B.) 162–176 (PMLR, 2022).

  • Liu, Z. et al. KAN: Kolmogorov–Arnold networks. Preprint at https://arxiv.org/abs/2404.19756 (2024).

  • Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annual Meeting of the Association for Computational Linguistics 1906–1919 (Association for Computational Linguistics, 2020).

  • Ji, Z. et al. Survey of hallucination in natural language generation. ACM Comput. Surv. 55, 248 (2022).

  • Manakul, P., Liusie, A. & Gales, M. J. F. SelfCheckGPT: zero-resource black-box hallucination detection for generative large language models. In Proc. 2023 Conference on Empirical Methods in Natural Language Processing 9004–9017 (Association for Computational Linguistics, 2023).

  • Yin, Z. et al. Do large language models know what they don’t know? In Proc. Findings of the Association for Computational Linguistics: ACL 2023 8653–8665 (Association for Computational Linguistics, 2023).

  • Tian, K., Mitchell, E., Yao, H., Manning, C. D. & Finn, C. Fine-tuning language models for factuality. Preprint at https://arxiv.org/abs/2311.08401 (2023).

  • Bommasani, R. et al. The foundation model transparency index. Preprint at https://arxiv.org/abs/2310.12941 (2023).

  • Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT−4. Preprint at https://arxiv.org/abs/2303.12712 (2023).

  • Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments