Saturday, January 10, 2026
No menu items!
HomeNatureTowards fibre-like loss for photonic integration from violet to near-infrared

Towards fibre-like loss for photonic integration from violet to near-infrared

  • Burmeister, E. F. et al. Photonic integrated circuit optical buffer for packet-switched networks. Opt. Express 17, 6629–6635 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960–6969 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Corato-Zanarella, M., Ji, X., Mohanty, A. & Lipson, M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. Opt. Express 32, 5718–5728 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light Sci. Appl. 13, 156 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lai, Y.-H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photon. 14, 345–349 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lu, X. et al. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photon. 18, 1010–1023 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedersen, A. T., Grüner-Nielsen, L. & Rottwitt, K. Measurement and modeling of low-wavelength losses in silica fibers and their impact at communication wavelengths. J. Lightwave Technol. 27, 1296–1300 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Armani, D., Kippenberg, T., Spillane, S. & Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Himeno, A., Kato, K. & Miya, T. Silica-based planar lightwave circuits. IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Birtch, E. M., Shelby, J. E. & Marc Whalen, J. Properties of binary GeO2-SiO2 glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 182–185 (2006).


    Google Scholar
     

  • Kao, C. K. Nobel lecture: Sand from centuries past: Send future voices fast. Rev. Mod. Phys. 82, 2299–2303 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dong, C-H. et al. Coupling of light from an optical fiber taper into silver nanowires. Appl. Phys. Lett. 95, 221109 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, W. J., Thibeault, B. J., John, D. D. & Reynolds, T. E. Highly selective and vertical etch of silicon dioxide using ruthenium films as an etch mask. J. Vac. Sci. Technol. A 39, 043204 (2021).

    Article 

    Google Scholar
     

  • Yuan, Z. et al. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat. Photon. 17, 977–983 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Eggleton, B. J., Steel, M. J. & Poulton, C. G.Brillouin Scattering Part 2, 1st edn, Vol. 110 (Academic Press, 2022).

  • Lu, Z. et al. Synthesized soliton crystals. Nat. Commun. 12, 3179 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hill, K. O., Fujii, Y., Johnson, D. C. & Kawasaki, B. S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Carmon, T. & K, V. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).

    Article 

    Google Scholar
     

  • Chen, H.-J. et al. Chaos-assisted two-octave-spanning microcombs. Nat. Commun. 11, 2336 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755–756 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Isichenko, A. et al. Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser. Sci. Rep. 14, 27015 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Near-visible integrated soliton microcombs with detectable repetition rates. Nat. Commun. 16, 4780 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Karpov, M., Pfeiffer, M. H. P., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Renaud, D. et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators. Photon. Res. 10, 1290–1296 (2022).

    Article 

    Google Scholar
     

  • Chiles, J. et al. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett. 43, 1527–1530 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photon. Rev. 17, 2200544 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chia, X. X. et al. Low-power four-wave mixing in deuterated silicon-rich nitride ring resonators. J. Lightwave Technol. 41, 3115–3130 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Frigg, A. et al. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films. Opt. Express 27, 37795–37805 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Low-temperature sputtered ultralow-loss silicon nitride for hybrid photonic integration. Laser Photon. Rev. 18, 2300642 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Golshani, N. et al. Low-loss, low-temperature PVD SiN waveguides. In Proc. IEEE 17th Int. Conf. Group IV Photonics (GFP), 1–2 (IEEE, 2021).

  • Guo, J. et al. Investigation of Q degradation in low-loss Si3N4 from heterogeneous laser integration. Opt. Lett. 49, 4613–4616 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, K. et al. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 47, 1855–1858 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Botter, R. et al. Guided-acoustic stimulated brillouin scattering in silicon nitride photonic circuits. Sci. Adv. 8, eabq2196 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, W. et al. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 31402–31419 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kondratiev, N. M. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chen, H.-J., Colburn, K. et al. Data for “Towards fibre-like-loss for photonic integration from violet to near-IR”. Zenodo https://doi.org/10.5281/zenodo.17478213 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments