Thursday, September 18, 2025
No menu items!
HomeNatureToughened self-assembled monolayers for durable perovskite solar cells

Toughened self-assembled monolayers for durable perovskite solar cells

  • Li, M. et al. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem. Rev. 124, 2138–2204 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 50, 13090–13128 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. & Zhu, K. Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9, 399–419 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Best Research-Cell Efficiency Chart (National Renewable Energy Laboratory, 2025); www.nrel.gov/pv/cell-efficiency.html.

  • Zhang, S. et al. Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells. ACS Mater. Lett. 4, 1976–1983 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, K. et al. peri-Fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Advances in inverted perovskite solar cells. Nat. Photon. 18, 1243–1253 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magomedov, A. et al. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1801892 (2018).

    Article 

    Google Scholar
     

  • Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, H. et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. Compact hole-selective self-assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells. Adv. Mater. 35, 2304415 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W. et al. Spin-coated and vacuum-processed hole-extracting self-assembled multilayers with H-aggregation for high-performance inverted perovskite solar cells. Angew. Chem. Int. Ed. 63, e202411730 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W. et al. π‐Expanded carbazoles as hole‐selective self‐assembled monolayers for high‐performance perovskite solar cells. Angew. Chem. Int. Ed. 61, e202213560 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kolb, H. C. et al. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Freudenberg, J. et al. Immobilization strategies for organic semiconducting conjugated polymers. Chem. Rev. 118, 5598–5689 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenz, T. et al. Self-assembled monolayer exchange reactions as a tool for channel interface engineering in low-voltage organic thin-film transistors. Langmuir 28, 13900–13904 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, C. et al. A dual functional diketopyrrolopyrrole-based conjugated polymer as single component semiconducting photoresist by appending azide groups in the side chains. Adv. Sci. 9, e2106087 (2022).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Fluoro-substituted DPP-bisthiophene conjugated polymer with azides in the side chains as ambipolar semiconductor and photoresist. Sci. China Chem. 65, 1791–1797 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Deng, X. et al. Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61, e202203088 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zorn, G. et al. X-Ray photoelectron spectroscopy investigation of the nitrogen species in photoactive perfluorophenylazide-modified surfaces. J. Phys. Chem. C 118, 376–383 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Qu, G. et al. Reformation of thiophene-functionalized phthalocyanine isomers for defect passivation to achieve stable and efficient perovskite solar cells. J. Energy Chem. 67, 263–275 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Almora, O. et al. On Mott–Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phy. Lett. 109, 173903 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rau, U. & Kirchartz, T. Charge carrier collection and contact selectivity in solar cells. Adv. Mater. Interfaces 6, 1900252 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wetzelaer, G. J. et al. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Rational molecular design of multifunctional self-assembled monolayers for efficient hole selection and buried interface passivation in inverted perovskite solar cells. Chem. Sci. 15, 2778–2785 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, C. et al. Indium tin oxide induced internal positive feedback and indium ion transport in perovskite solar cells. Angew. Chem. Int. Ed. 63, e202403824 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7, 794–807 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kerner, R. A. & Rand, B. P. Electrochemical and thermal etching of indium tin oxide by solid-state hybrid organic–inorganic perovskites. ACS Appl. Energy Mater. 2, 6097–6101 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Roose, B. et al. Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells. J. Phys. Chem. Lett. 11, 6505–6512 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, L. et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368, eaba2412 (2020).

  • Penkov, O. V. et al. I. X-Ray Calc 3: improved software for simulation and inverse problem solving for X-ray reflectivity. J. Appl Crystallogr. 57, 555–566 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments