Friday, February 7, 2025
No menu items!
HomeNatureTopological water-wave structures manipulating particles

Topological water-wave structures manipulating particles

  • Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Soskin, M. S. & Vasnetsov, M. V. Singular optics. Prog. Opt. 42, 219–276 (2001).

    ADS 

    Google Scholar
     

  • Dennis, M. R., O’Holleran, K. & Padgett, M. J. Singular optics: optical vortices and polarization singularities. Prog. Opt. 53, 293–363 (2009).

    ADS 
    MATH 

    Google Scholar
     

  • Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Guo, S., Ya, Z., Wu, P. & Wan, M. A review on acoustic vortices: generation, characterization, applications and perspectives. J. Appl. Phys. 132, 210701 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys. Rep. 690, 1–70 (2017).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Nye, J. F. & Hajnal, J. V. The wave structure of monochromatic electromagnetic radiation. Proc. R. Soc. Lond. A 409, 21–36 (1987).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Freund, I. Optical Möbius strips in three-dimensional ellipse fields. I. Lines of circular polarization. Opt. Commun. 283, 1–15 (2010).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bliokh, K. Y., Alonso, M. A. & Dennis, M. R. Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects. Rep. Prog. Phys. 82, 122401 (2019).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Muelas-Hurtado, R. D. et al. Observation of polarization singularities and topological textures in sound waves. Phys. Rev. Lett. 129, 204301 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Du, L., Yang, A., Zayats, A. V. & Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 15, 650–654 (2019).

    CAS 
    MATH 

    Google Scholar
     

  • Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Deng, Z.-L., Shi, T., Krasnok, A., Li, X. & Alù, A. Observation of localized magnetic plasmon skyrmions. Nat. Commun. 13, 8 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, H. et al. Observation of acoustic skyrmions. Phys. Rev. Lett. 127, 144502 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cao, L., Wan, S., Zeng, Y., Zhu, Y. & Assouar, B. Observation of phononic skyrmions based on hybrid spin of elastic waves. Sci. Adv. 9, eadf3652 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photon. 18, 15–25 (2024).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Allen, L., Barnett, S. M. & Padgett, M. J. (eds) Optical Angular Momentum (IoP Publishing, 2003).

  • Andrews, D. L. & Babiker, M. (eds) The Angular Momentum of Light (Cambridge Univ. Press, 2012).

  • Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gao, D. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozcelik, A. et al. Acoustic tweezers for the life sciences. Nat. Methods 15, 1021–1028 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020).

    MATH 

    Google Scholar
     

  • Rozenman, G. G., Fu, S., Arie, A. & Shemer, L. Quantum mechanical and optical analogies in surface gravity water waves. Fluids 4, 96 (2019).

    ADS 

    Google Scholar
     

  • Han, L., Chen, S. & Chen, H. Water wave polaritons. Phys. Rev. Lett. 128, 204501 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bliokh, K. Y., Punzmann, H., Xia, H., Nori, F. & Shats, M. Field theory spin and momentum in water waves. Sci. Adv. 8, eabm1295 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, S. et al. Controlling water waves with artificial structures. Nat. Rev. Phys. 6, 231–245 (2024).

    MATH 

    Google Scholar
     

  • Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2016).

    ADS 
    MATH 

    Google Scholar
     

  • Bliokh, K. Y. et al. Roadmap on structured waves. J. Opt. 25, 103001 (2023).

    ADS 
    MATH 

    Google Scholar
     

  • Falkovich, G. Fluid Mechanics 2nd edn (Cambridge Univ. Press, 2018).

  • Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).

    CAS 

    Google Scholar
     

  • Filatov, S. V. et al. Nonlinear generation of vorticity by surface waves. Phys. Rev. Lett. 116, 054501 (2016).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Francois, N., Xia, H., Punzmann, H., Fontana, P. W. & Shats, M. Wave-based liquid-interface metamaterials. Nat. Commun. 8, 14325 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Che, Z. et al. Generation of spatiotemporal vortex pulses by resonant diffractive grating. Phys. Rev. Lett. 132, 044001 (2024).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bliokh, K. Y. et al. Polarization singularities and Möbius strips in sound and water-surface waves. Phys. Fluids 33, 077122 (2021).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Smirnova, D. A., Nori, F. & Bliokh, K. Y. Water-wave vortices and skyrmions. Phys. Rev. Lett. 132, 054003 (2024).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jones, W. L. Asymmetric wave-stress tensors and wave spin. J. Fluid Mech. 58, 737–747 (1973).

    ADS 
    MATH 

    Google Scholar
     

  • Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Shi, C. et al. Observation of acoustic spin. Natl Sci. Rev. 6, 707–712 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wildeman, S. Real-time quantitative schlieren imaging by fast Fourier demodulation of a checkered backdrop. Exp. Fluids 59, 97 (2018).

    MATH 

    Google Scholar
     

  • Ceperley, P. H. Rotating waves. Am. J. Phys. 60, 938–942 (2010).

    ADS 
    MATH 

    Google Scholar
     

  • Wang, H., Szekerczes, K. & Afanasev, A. Electromagnetic vortex topologies from sparse circular phased arrays. J. Phys. Commun. 6, 025005 (2022).

    MATH 

    Google Scholar
     

  • Ohno, T. & Miyanishi, S. Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Opt. Express 14, 6285–6290 (2006).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, H. et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529–536 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • van den Bremer, T. S. & Breivik, Ø. Stokes drift. Philos. Trans. R. Soc. A 376, 20170104 (2017).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Abella, A. P. & Soriano, M. N. Measurement of Eulerian vorticity beneath rotating surface waves. Phys. Scr. 95, 085007 (2020).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Toftul, I. D., Bliokh, K. Y., Petrov, M. I. & Nori, F. Acoustic radiation force and torque on small particles as measures of the canonical momentum and spin densities. Phys. Rev. Lett. 123, 183901 (2019).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • O’Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • Garcés-Chávez, V. et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 91, 093602 (2003).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Burns, L., Bliokh, K. Y., Nori, F. & Dressel, J. Acoustic versus electromagnetic field theory: scalar, vector, spinor representations and the emergence of acoustic spin. New J. Phys. 22, 053050 (2020).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Meng, Y., Hao, Y., Guenneau, S., Wang, S. & Li, J. Willis coupling in water waves. New J. Phys. 23, 073004 (2021).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

  • Blackstock, D. T. Fundamentals of Physical Acoustics (Wiley, 2000).

  • Toftul, I. et al. Radiation forces and torques in optics and acoustics. Preprint at arxiv.org/abs/2410.23670 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments