Saturday, August 30, 2025
No menu items!
HomeNatureTopological prethermal strong zero modes on superconducting processors

Topological prethermal strong zero modes on superconducting processors

  • Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS 

    Google Scholar
     

  • Wen, X.-G. Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected topological orders in interacting bosonic systems. Science 338, 1604–1606 (2012).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edn, Vol. 5 (Elsevier, 2013).

  • Pollmann, F., Berg, E., Turner, A. M. & Oshikawa, M. Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys. Rev. B 85, 075125 (2012).

    ADS 

    Google Scholar
     

  • Fidkowski, L. & Kitaev, A. Topological phases of fermions in one dimension. Phys. Rev. B 83, 075103 (2011).

    ADS 

    Google Scholar
     

  • Ma, R. & Wang, C. Average symmetry-protected topological phases. Phys. Rev. X 13, 031016 (2023).

    CAS 

    Google Scholar
     

  • Brown, B. J., Loss, D., Pachos, J. K., Self, C. N. & Wootton, J. R. Quantum memories at finite temperature. Rev. Mod. Phys. 88, 045005 (2016).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Hastings, M. B. Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Roberts, S., Yoshida, B., Kubica, A. & Bartlett, S. D. Symmetry-protected topological order at nonzero temperature. Phys. Rev. A 96, 022306 (2017).

    ADS 

    Google Scholar
     

  • Else, D. V., Fendley, P., Kemp, J. & Nayak, C. Prethermal strong zero modes and topological qubits. Phys. Rev. X 7, 041062 (2017).


    Google Scholar
     

  • Parker, D. E., Vasseur, R. & Scaffidi, T. Topologically protected long edge coherence times in symmetry-broken phases. Phys. Rev. Lett. 122, 240605 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kemp, J., Yao, N. Y. & Laumann, C. R. Symmetry-enhanced boundary qubits at infinite temperature. Phys. Rev. Lett. 125, 200506 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    ADS 

    Google Scholar
     

  • Tacchino, F., Chiesa, A., Carretta, S. & Gerace, D. Quantum computers as universal quantum simulators: state-of-the-art and perspectives. Adv. Quantum Technol. 3, 1900052 (2020).


    Google Scholar
     

  • Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fauseweh, B. Quantum many-body simulations on digital quantum computers: state-of-the-art and future challenges. Nat. Commun. 15, 2123 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravyi, S., Hastings, M. B. & Michalakis, S. Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS 

    Google Scholar
     

  • Kjäll, J. A., Bardarson, J. H. & Pollmann, F. Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113, 107204 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).

    ADS 

    Google Scholar
     

  • Chandran, A., Khemani, V., Laumann, C. R. & Sondhi, S. L. Many-body localization and symmetry-protected topological order. Phys. Rev. B 89, 144201 (2014).

    ADS 

    Google Scholar
     

  • Bahri, Y., Vosk, R., Altman, E. & Vishwanath, A. Localization and topology protected quantum coherence at the edge of hot matter. Nat. Commun. 6, 7341 (2015).

    PubMed 

    Google Scholar
     

  • Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J.-Y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    CAS 

    Google Scholar
     

  • Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Ha, H., Morningstar, A. & Huse, D. A. Many-body resonances in the avalanche instability of many-body localization. Phys. Rev. Lett. 130, 250405 (2023).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, D. M., Crowley, P. J. D., Khemani, V. & Chandran, A. Phenomenology of the prethermal many-body localized regime. Phys. Rev. Lett. 131, 106301 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Léonard, J. et al. Probing the onset of quantum avalanches in a many-body localized system. Nat. Phys. 19, 481–485 (2023).


    Google Scholar
     

  • Fendley, P. Parafermionic edge zero modes in Zn-invariant spin chains. J. Stat. Mech. 2012, P11020 (2012).


    Google Scholar
     

  • Fendley, P. Strong zero modes and eigenstate phase transitions in the XYZ/interacting Majorana chain. J. Phys. A Math. Theor. 49, 30LT01 (2016).

    MathSciNet 

    Google Scholar
     

  • Kemp, J., Yao, N. Y., Laumann, C. R. & Fendley, P. Long coherence times for edge spins. J. Stat. Mech. 2017, 063105 (2017).

    MathSciNet 

    Google Scholar
     

  • Yates, D. J., Abanov, A. G. & Mitra, A. Dynamics of almost strong edge modes in spin chains away from integrability. Phys. Rev. B 102, 195419 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Digital quantum simulation of Floquet symmetry-protected topological phases. Nature 607, 468–473 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumitrescu, P. T. et al. Dynamical topological phase realized in a trapped-ion quantum simulator. Nature 607, 463–467 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi, X. et al. Noise-resilient edge modes on a chain of superconducting qubits. Science 378, 785–790 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abanin, D. A., De Roeck, W. & Huveneers, F. Exponentially slow heating in periodically driven many-body systems. Phys. Rev. Lett. 115, 256803 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Mori, T., Kuwahara, T. & Saito, K. Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems. Phys. Rev. Lett. 116, 120401 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Abanin, D., De Roeck, W., Ho, W. W. & Huveneers, F. A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems. Commun. Math. Phys. 354, 809–827 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Else, D. V., Bauer, B. & Nayak, C. Prethermal phases of matter protected by time-translation symmetry. Phys. Rev. X 7, 011026 (2017).


    Google Scholar
     

  • Yin, C. & Lucas, A. Prethermalization and the local robustness of gapped systems. Phys. Rev. Lett. 131, 050402 (2023).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, S. et al. Digital simulation of projective non-Abelian anyons with 68 superconducting qubits. Chin. Phys. Lett. 40, 060301 (2023).

    ADS 

    Google Scholar
     

  • Olund, C. T., Yao, N. Y. & Kemp, J. Boundary strong zero modes. Phys. Rev. B 111, L201114 (2025).

    CAS 

    Google Scholar
     

  • Wildeboer, J., Iadecola, T. & Williamson, D. J. Symmetry-protected infinite-temperature quantum memory from subsystem codes. PRX Quantum 3, 020330 (2022).

    ADS 

    Google Scholar
     

  • Jiang, S., Yuan, D., Jiang, W., Deng, D.-L. & Machado, F. Prethermal time-crystalline corner modes. Phys. Rev. Lett. https://doi.org/10.1103/np9w-jsf9 (2025).

  • Else, D. V., Ho, W. W. & Dumitrescu, P. T. Long-lived interacting phases of matter protected by multiple time-translation symmetries in quasiperiodically driven systems. Phys. Rev. X 10, 021032 (2020).

    CAS 

    Google Scholar
     

  • Friedman, A. J., Ware, B., Vasseur, R. & Potter, A. C. Topological edge modes without symmetry in quasiperiodically driven spin chains. Phys. Rev. B 105, 115117 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 

    Google Scholar
     

  • Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Foxen, B. et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett. 125, 120504 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magnus, W. On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954).

    MathSciNet 

    Google Scholar
     

  • Blanes, S., Casas, F., Oteo, J. A. & Ros, J. The magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Jin, F. et al. Topological prethermal strong zero modes on superconducting processors. Code Ocean https://codeocean.com/capsule/8397511/tree (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments