Wednesday, October 30, 2024
No menu items!
HomeNatureTissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei

Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei

  • Magez, S. et al. The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog. 4, e1000122 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cross, G. A. M., Kim, H. S. & Wickstead, B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195, 59–73 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, L. S. M. et al. Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563, 121–125 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hertz-Fowler, C. et al. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS ONE 3, e3527 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosentino, R. O., Brink, B. G. & Nicolai Siegel, T. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. NAR Genom. Bioinform. 3, lqab082 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, J. P. J., Wang, H. & David Barry, J. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation. PLoS Pathog. 9, e1003502 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mugnier, M. R., Cross, G. A. M. & Papavasiliou, F. N. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science 347, 1470–1473 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayaraman, S. et al. Application of long read sequencing to determine expressed antigen diversity in Trypanosoma brucei infections. PLoS Negl. Trop. Dis. 13, e0007262 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capewell, P. et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife 5, e17716 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camara, M. et al. Extravascular dermal trypanosomes in suspected and confirmed cases of gambiense human African trypanosomiasis. Clin. Infect. Dis. 73, 12–20 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trindade, S. et al. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe https://doi.org/10.1016/j.chom.2016.05.002 (2016).

  • Carvalho, T. et al. Trypanosoma brucei triggers a marked immune response in male reproductive organs. PLoS Negl. Trop. Dis. https://doi.org/10.1371/journal.pntd.0006690 (2018).

  • De Niz, M. et al. Organotypic endothelial adhesion molecules are key for Trypanosoma brucei tropism and virulence. Cell Rep 36, 109741 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Control and Surveillance of Human African Trypanosomiasis: Report of a WHO Expert Committee. WHO Technical Report Series (WHO, 2013).

  • Crilly, N. P. & Mugnier, M. R. Thinking outside the blood: perspectives on tissue-resident Trypanosoma brucei. PLoS Pathog. 17, e1009866 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamper, S. M. & Barbet, A. F. Surface epitope variation via mosaic gene formation is potential key to long-term survival of Trypanosoma brucei. Mol. Biochem. Parasitol. 53, 33–44 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seed, J. R. & Effron, H. G. Simultaneous presence of different antigenic populations of Trypanosoma brucei gambiense in Microtus montanus. Parasitology 66, 269–278 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seed, J. R., Edwards, R. & Sechelski, J. The ecology of antigenic variation. J. Protozool. 31, 48–53 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barry, J. D. & Emery, D. L. Parasite development and host responses during the establishment of Trypanosoma brucei infection transmitted by tsetse fly. Parasitology 88, 67–84 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Tanner, M., Jenni, L., Hecker, H. & Brun, R. Characterization of Trypanosoma brucei isolated from lymph nodes of rats. Parasitology 80, 383–391 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vickerman, K. Trypanosome sociology and antigenic variation. Parasitology 99, S37–S47 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Barry, J. D. & Turner, C. M. R. The dynamics of antigenic variation and growth of African trypanosomes. Parasitol. Today 7, 207–211 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engstler, M. & Boshart, M. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev. 18, 2798–2811 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, C. M., Hunter, C. A., Barry, J. D. & Vickerman, K. Similarity in variable antigen type composition of Trypanosoma brucei Rhodesiense populations in different sites within the mouse host. Trans. R. Soc. Trop. Med. Hyg. 80, 824–830 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, C. M. R. & Barry, J. D. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99, 67–75 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Salanti, A. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200, 1197–1203 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy, P. E. & Fried, M. Plasmodium falciparum adhesion in the placenta. Curr. Opin. Microbiol. 6, 371–376 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonsson, A. ‐B., Ilver, D., Falk, P., Pepose, J. & Normark, S. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol. 13, 403–416 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nassif, X. et al. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol. Microbiol. 8, 719–725 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudel, T., van Putten, J. P. M., Gibbs, C. P., Haas, R. & Meyer, T. F. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol. Microbiol. 6, 3439–3450 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Virji, M. & Heckels, J. E. The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. J. Gen. Microbiol. 130, 1089–1095 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Dean, S., Marchetti, R., Kirk, K. & Matthews, K. R. A surface transporter family conveys the trypanosome differentiation signal. Nature 459, 213–217 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McWilliam, K. R. et al. High-resolution scRNA-seq reveals genomic determinants of antigen expression hierarchy in African Trypanosomes. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.586247 (2024).

  • Smith, J. E. et al. DNA damage drives antigen diversification through mosaic VSG formation in Trypanosoma brucei. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.582209 (2024).

  • Calvo-Alvarez, E., Cren-Travaillé, C., Crouzols, A. & Rotureau, B. A new chimeric triple reporter fusion protein as a tool for in vitro and in vivo multimodal imaging to monitor the development of African trypanosomes and Leishmania parasites. Infect. Genet. Evol. 63, 391–403 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hutchinson, S. et al. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands. PLoS Pathog. 17, e1009904 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage, A. F. et al. Transcript expression analysis of putative Trypanosoma brucei GPI-anchored surface proteins during development in the tsetse and mammalian hosts. PLoS Negl. Trop. Dis. 6, 1708 (2012).

    Article 

    Google Scholar
     

  • Schopf, L. R., Filutowicz, H., Bi, X. J. & Mansfield, J. M. Interleukin-4-dependent immunoglobulin G1 isotype switch in the presence of a polarized antigen-specific Th1-cell response to the trypanosome variant surface glycoprotein. Infect. Immun. 66, 451 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. et al. Distinct contributions of CD4+ and CD8+ T cells to pathogenesis of trypanosoma brucei infection in the context of gamma interferon and interleukin-10. Infect. Immun. 83, 2785–2795 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinitz, D. M. & Mansfield, J. M. T-cell-independent and T-cell-dependent B-cell responses to exposed variant surface glycoprotein epitopes in trypanosome-infected mice. Infect. Immun. 58, 2337–2342 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radwanska, M. et al. Comparative analysis of antibody responses against HSP60, invariant surface glycoprotein 70, and variant surface glycoprotein reveals a complex antigen-specific pattern of immunoglobulin isotype switching during infection by Trypanosoma brucei. Infect. Immun. 68, 848–860 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hector, R. F., Collins, M. S. & Pennington, J. E. Treatment of experimental Pseudomonas aeruginosa pneumonia with a human IgM monoclonal antibody. J. Infect. Dis. 160, 483–489 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barth, W. F., Wochner, R. D., Waldmann, T. A. & Fahey, J. L. Metabolism of human gamma macroglobulins. J. Clin. Invest. 43, 1036 (1964).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehlitz, D. & Molyneux, D. H. The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission cycles: expect the unexpected. Parasite Epidemiol. Control 6, e00113 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larcombe, S. D., Briggs, E. M., Savill, N., Szoor, B. & Matthews, K. The developmental hierarchy and scarcity of replicative slender trypanosomes in blood challenges their role in infection maintenance. Proc. Natl Acad. Sci. USA 120, e2306848120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, L. J., Majiwa, P., Read, A. F. & Barry, J. D. Probabilistic order in antigenic variation of Trypanosoma brucei. Int. J. Parasitol. 35, 961–972 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinger, J., Chowdhury, S. & Papavasiliou, F. N. Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat. Commun. 8, 828 (2017).

  • Trindade, S. et al. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat. Commun. 13, 7548 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimogawa, M. M. et al. Parasite motility is critical for virulence of African trypanosomes. Sci. Rep. 8, 9122 (2018).

  • Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).

    Article 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. & Godzik, A. CD-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krueger, F. et al. FelixKrueger/TrimGalore: v.0.6.4 – add default decompression path. Zenodo https://doi.org/10.5281/zenodo.5127898 (2023).

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • So, J. et al. VSGs expressed during natural T. b. gambiense infection exhibit extensive sequence divergence and a subspecies-specific bias towards type B N-terminal domains. mBio 13, e02553-22 (2022).

  • Gruszynski, A. E., DeMaster, A., Hooper, N. M. & Bangs, J. D. Surface coat remodeling during differentiation of Trypanosoma brucei. J. Biol. Chem. 278, 24665–24672 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-Y. & Kitaoka, M. A beginner’s guide to rigor and reproducibility in fluorescence imaging experiments. Mol. Biol. Cell https://doi.org/10.1091/mbc.E17-05-0276 (2018).

  • Wirtz, E., Leal, S., Ochatt, C. & Cross, G. A. M. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–101 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanmugasundram, A. et al. TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl. Trop. Dis. 17, e0011058 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y. & Wang, J. ggcoverage: an R package to visualize and annotate genome coverage for various NGS data. BMC Bioinf. 24, 309 (2023).

    Article 

    Google Scholar
     

  • Moloo, S. K. An artificial feeding technique for Glossina. Parasitology 63, 507–512 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacLeod, E. T., Maudlin, I., Darby, A. C. & Welburn, S. C. Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 134, 827–831 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beaver, A. mugnierlab/Beaver2022: Release for publication. Zenodo https://doi.org/10.5281/zenodo.13684001 (2024).

  • Barnett, S. A. The skin and hair of mice living at a low environmental temperature. Q. J. Exp. Physiol. Cogn. Med. Sci. 44, 35–42 (1959).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments