Friday, July 25, 2025
No menu items!
HomeNatureThree-step biosynthesis of salicylic acid from benzoyl-CoA in plants

Three-step biosynthesis of salicylic acid from benzoyl-CoA in plants

  • Peng, Y., Yang, J., Li, X. & Zhang, Y. Salicylic acid: biosynthesis and signaling. Annu. Rev. Plant Biol. 72, 761–791 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gaffney, T. et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Delaney, T. P. et al. A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Diverse roles of salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity. Plant Cell https://doi.org/10.1105/tpc.1120.00499 (2020).

  • Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562–565 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Strawn, M. A. et al. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J. Biol. Chem. 282, 5919–5933 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Rekhter, D. et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365, 498–502 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Torrens-Spence, M. P. et al. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol. Plant 12, 1577–1586 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, W., Wang, Y., Li, X. & Zhang, Y. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Mol. Plant 13, 31–41 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Evolutionary history of the glycoside hydrolase 3 (GH3) family based on the sequenced genomes of 48 plants and identification of jasmonic acid-related GH3 proteins in Solanum tuberosum. Int. J. Mol. Sci. 19, 1850 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Isochorismate synthase is required for phylloquinone, but not salicylic acid biosynthesis in rice. aBIOTECH 5, 488–496 (2024).

  • Xu, L. et al. AIM1‐dependent high basal salicylic acid accumulation modulates stomatal aperture in rice. N. Phytol. 238, 1420–1430 (2023).

    CAS 

    Google Scholar
     

  • Xu, L. et al. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice. Plant Cell 29, 560–574 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. A peroxisomal cinnamate: CoA ligase-dependent phytohormone metabolic cascade in submerged rice germination. Dev. Cell 59, 1363–1378 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Species-and organ-specific contribution of peroxisomal cinnamate: CoA ligases to benzoic and salicylic acid biosynthesis. Plant Cell 37, koae329 (2025).

    CAS 

    Google Scholar
     

  • Jia, X. et al. The origin and evolution of salicylic acid signaling and biosynthesis in plants. Mol. Plant 16, 245–259 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Yalpani, N., León, J., Lawton, M. A. & Raskin, I. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 103, 315–321 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallas, J. A., Paiva, N. L., Lamb, C. & Dixon, R. A. Tobacco plants epigenetically suppressed in phenylalanine ammonia‐lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 10, 281–293 (1996).

    CAS 

    Google Scholar
     

  • Elkind, Y. et al. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc. Natl Acad. Sci. USA 87, 9057–9061 (1990).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bussell, J. D., Reichelt, M., Wiszniewski, A. A., Gershenzon, J. & Smith, S. M. Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein abnormal INFLORESCENCE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiol. 164, 48–54 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Leon, J., Shulaev, V., Yalpani, N., Lawton, M. A. & Raskin, I. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc. Natl Acad. Sci. USA 92, 10413–10417 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catinot, J., Buchala, A., Abou-Mansour, E. & Métraux, J.-P. Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett. 582, 473–478 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Takagi, K., Tasaki, K., Komori, H. & Katou, S. Hypersensitivity-related genes HSR201 and HSR203J are regulated by calmodulin-binding protein 60-type transcription factors and required for pathogen signal-induced salicylic acid synthesis. Plant Cell Physiol. 63, 1008–1022 (2022).

    PubMed 

    Google Scholar
     

  • Kotera, Y. et al. The peroxisomal β-oxidative pathway and benzyl alcohol O-benzoyltransferase HSR201 cooperatively contribute to the biosynthesis of salicylic acid. Plant Cell Physiol. 64, 758–770 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Marek, G. et al. A high-throughput method for isolation of salicylic acid metabolic mutants. Plant Methods 6, 21 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Auria, J. C., Chen, F. & Pichersky, E. Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466–476 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J., Zhu, W. & Zhao, Q. Salicylic acid biosynthesis is not from phenylalanine in Arabidopsis. J. Integr. Plant Biol. 65, 881–887 (2022).

  • Shine, M. B. et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. N. Phytol. 212, 627–636 (2016).

    CAS 

    Google Scholar
     

  • Liang, B. et al. Salicylic acid is required for broad-spectrum disease resistance in rice. Int. J. Mol. Sci. 23, 1354 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Widhalm, J. R. & Dudareva, N. A familiar ring to it: biosynthesis of plant benzoic acids. Mol. Plant 8, 83–97 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Colquhoun, T. A. et al. A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petunia× hybrida cv. ‘Mitchell Diploid’ flower. J. Exp. Bot. 63, 4821–4833 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klempien, A. et al. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. Plant Cell 24, 2015–2030 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qualley, A. V., Widhalm, J. R., Adebesin, F., Kish, C. M. & Dudareva, N. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc. Natl Acad. Sci. USA 109, 16383–16388 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moerkercke, A. V., Schauvinhold, I., Pichersky, E., Haring, M. A. & Schuurink, R. C. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J. 60, 292–302 (2009).

    PubMed 

    Google Scholar
     

  • Lee, S. et al. Benzoylation and sinapoylation of glucosinolate R‐groups in Arabidopsis. Plant J. 72, 411–422 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Kotera, Y. et al. Peroxisomal localization of benzyl alcohol O-benzoyltransferase HSR201 is mediated by a non-canonical peroxisomal targeting signal and required for salicylic acid biosynthesis. Plant Cell Physiol. 65, 2054–2065 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranawaka, B. et al. A multi-omic Nicotiana benthamiana resource for fundamental research and biotechnology. Nat. Plants 9, 1558–1571 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (Babraham Institute, 2010).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, H. et al. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500–503 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. Identification of endogenous small peptides involved in rice immunity through transcriptomics‐and proteomics‐based screening. Plant Biotechnol. J. 18, 415–428 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Plant Physiol. 188, 1507–1520 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Hamann, T. & Møller, B. L. Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast. Protein Expression Purif. 56, 121–127 (2007).

    CAS 

    Google Scholar
     

  • Zhao, X., Zhao, Y., Gou, M. & Liu, C.-J. Tissue-preferential recruitment of electron transfer chains for cytochrome P450-catalyzed phenolic biosynthesis. Sci. Adv. 9, eade4389 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114–126 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments