Rodnina, M. V. Translation in prokaryotes. Cold Spring Harb. Perspect. Biol. 10, a032664 (2018).
Gomez, M. A. R. & Ibba, M. Aminoacyl-tRNA synthetases. RNA 26, 910–936 (2020).
Weber, A. L. & Lacey, J. C. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides. J. Mol. Evol. 6, 309–320 (1975).
Weber, A. L. & Orgel, L. E. Amino acid activation with adenosine 5′-phosphorimidazolide. J. Mol. Evol. 11, 9–16 (1978).
Radakovic, A. et al. A potential role for RNA aminoacylation prior to its role in peptide synthesis. Proc. Natl Acad. Sci. USA 121, e2410206121 (2024).
Spiegelman, S., Haruna, I., Holland, I. B., Beaudreau, G. & Mills, D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc. Natl Acad. Sci. USA 54, 919–927 (1965).
Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).
Voytek, S. B. & Joyce, G. F. Emergence of a fast-reacting ribozyme that is capable of undergoing continuous evolution. Proc. Natl Acad. Sci. USA 104, 15288–15293 (2007).
Ichihashi, N. et al. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat. Commun. 4, 2494 (2013).
Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).
Rout, S. K., Friedmann, M. P., Riek, R. & Greenwald, J. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9, 234 (2018).
Breaker, R. R. & Joyce, G. F. The expanding view of RNA and DNA function. Chem. Biol. 21, 1059–1065 (2014).
Tamura, K. & Schimmel, P. Chiral-selective aminoacylation of an RNA minihelix. Science 305, 1253–1253 (2004).
Wu, L.-F., Su, M., Liu, Z., Bjork, S. J. & Sutherland, J. D. Interstrand aminoacyl transfer in a tRNA acceptor stem-overhang mimic. J. Am. Chem. Soc. 143, 11836–11842 (2021).
Turk, R. M., Illangasekare, M. & Yarus, M. Catalyzed and spontaneous reactions on ribozyme ribose. J. Am. Chem. Soc. 133, 6044–6050 (2011).
Biron, J.-P., Parkes, A. L., Pascal, R. & Sutherland, J. D. Expeditious, potentially primordial, aminoacylation of nucleotides. Angew. Chem. Int. Ed. 44, 6731–6734 (2005).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
De Duve, C. in The Molecular Origins of Life: Assembling Pieces of the Puzzle (ed. Brack, A.) 219–236 (Cambridge Univ. Press, 1998).
Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134 (2017).
Fairchild, J., Islam, S., Singh, J., Bučar, D. K. & Powner, M. W. Prebiotically plausible chemoselective pantetheine synthesis in water. Science 383, 911–918 (2024).
Gless, B. H., Schmied, S. H., Bejder, B. S. & Olsen, C. A. Förster resonance energy transfer assay for investigating the reactivity of thioesters in biochemistry and native chemical ligation. JACS Au 3, 1443–1451 (2023).
Weber, A. L. & Orgel, L. E. The formation of peptides from glycine thioesters. J. Mol. Evol. 13, 193–202 (1979).
Thoma, B. & Powner, M. W. Selective synthesis of lysine peptides and the prebiotically plausible synthesis of catalytically active diaminopropionic acid peptide nitriles in water. J. Am. Chem. Soc. 145, 3121–3130 (2023).
Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).
Ninomiya, K., Minohata, T., Nishimura, M. & Sisido, M. In situ chemical aminoacylation with amino acid thioesters linked to a peptide nucleic acid. J. Am. Chem. Soc. 126, 15984–15989 (2004).
Li, N. & Huang, F. Ribozyme-catalyzed aminoacylation from CoA thioesters. Biochemistry 44, 4582–4590 (2005).
Attwater, J., Wochner, A. & Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 5, 1011–1018 (2013).
Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).
Fang, L., Xiao, L., Jun, Y. W., Onishi, Y. & Kool, E. T. Reversible 2′-OH acylation enhances RNA stability. Nat. Chem. 15, 1296–1305 (2023).
Yarus, M. A specific amino acid binding site composed of RNA. Science 240, 1751–1758 (1988).
Burd, G. C. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).
Aumiller, W. & Keating, C. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).
Deng, M., Yu, J. & Blackmond, D. G. Symmetry breaking and chiral amplification in prebiotic ligation reactions. Nature 626, 1019–1024 (2024).
Calendar, R. & Berg, P. d-tyrosyl RNA: formation, hydrolysis and utilization for protein synthesis. J. Mol. Biol. 26, 39–54 (1967).
Pawar, K. I. et al. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. eLife 6, e24001 (2017).
Hadjichristidis, N., Iatrous, H., Pitsikalis, M. & Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem. Rev. 109, 5528–5578 (2009).
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
Singh, J. et al. Prebiotic catalytic peptide ligation yields proteinogenic peptides by intramolecular amide catalyzed hydrolysis facilitating regioselective lysine ligation in neutral water. J. Am. Chem. Soc. 144, 10151–10155 (2022).
Barat, A. & Powner, M. W. Spontaneous peptide ligation mediated by cysteamine. JACS Au 4, 1752–1757 (2024).
Chaturvedi, R. K., MacMahon, A. E. & Schmir, G. L. The hydrolysis of thioimidate esters. Tetrahedral intermediates and general acid catalysis. J. Am. Chem. Soc. 89, 6984–6993 (1967).
Van den Berg, L. The effect of addition of sodium and potassium chloride to the reciprocal system: KH2PO4-Na2HPO4-H2O on pH and composition during freezing. Arch. Biochem. Biophys. 84, 305–315 (1959).
Jash, B., Tremmel, P., Jovanovic, D. & Richert, C. Single nucleotide translation without ribosomes. Nat. Chem. 13, 751–757 (2021).
Reußwig, S. G. & Richert, C. Ribosome-free translation up to pentapeptides via template walk on RNA sequences. Angew. Chem. Int. Ed. 63, e202410317 (2024).
Toner, J. D. & Catling, D. C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).