One researcher I spoke with at the time suggested that sodium-ion batteries might not compete directly with lithium-ion batteries but could instead find specialized uses where the chemistry made sense. Two years later, I think we’re starting to see what those are.
One growing segment that could be a big win for sodium-ion: electric micromobility vehicles, like scooters and three-wheelers. Since these vehicles tend to travel shorter distances at lower speeds than cars, the lower energy density of sodium-ion batteries might not be as big a deal.
There’s a great BBC story from last week that profiled efforts to put sodium-ion batteries in electric scooters. It focused on one Chinese company called Yadea, which is one of the largest makers of electric two- and three-wheelers in the world. Yadea has brought a handful of sodium-powered models to the market so far, selling about 1,000 of the scooters in the first three months of 2025, according to the company’s statement to the BBC. It’s early days, but it’s interesting to see this market emerging.
Sodium-ion batteries are also seeing significant progress in stationary energy storage installations, including some on the grid. (Again, if you’re not worried about carting the battery around and fitting it into the limited package of a vehicle, energy density isn’t so important.)
The Baochi Energy Storage Station that just opened in Yunnan province, China, is a hybrid system that uses both lithium-ion and sodium-ion batteries and has a capacity of 400 megawatt-hours. And Natron Energy in the US is among those targeting other customers for stationary storage, specifically going after data centers.
While smaller vehicles and stationary installations appear to be the early wins for sodium, some companies aren’t giving up on using the alternative for EVs as well. The Chinese battery giant CATL announced earlier this year that it plans to produce sodium-ion batteries for heavy-duty trucks under the brand name Naxtra Battery.
Ultimately, lithium is the juggernaut of the battery industry, and going head to head is going to be tough for any alternative chemistry. But sticking with niches that make sense could help sodium-ion make progress at a time when I’d argue we need every successful battery type we can get.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.