Thursday, May 22, 2025
No menu items!
HomeNatureThe structure of liquid carbon elucidated by in situ X-ray diffraction

The structure of liquid carbon elucidated by in situ X-ray diffraction

  • Hirsch, A. The era of carbon allotropes. Nat. Mater. 9, 868–871 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Savvatimskiy, A. I. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963-2003). Carbon 43, 1115–1142 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Hull, C. J., Raj, S. L. & Saykally, R. J. The liquid state of carbon. Chem. Phys. Lett. 749, 137341 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky?. Nature 292, 435–436 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Helled, R., Podolak, M. & Vos, E. Methane planets and their mass–radius relation. Astrophys. J. Lett. 805, L11 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dufour, P., Liebert, J., Fontaine, G. & Behara, N. White dwarf stars with carbon atmospheres. Nature 450, 522–524 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Heer, W. A. et al. Liquid carbon, carbon-glass beads, and the crystallization of carbon nanotubes. Science 307, 907–910 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zylstra, A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baluch, A. H., Park, Y. & Kim, C. G. Hypervelocity impact on carbon/epoxy composites in low Earth orbit environment. Compos. Struct. 96, 554–560 (2013).

    Article 

    Google Scholar
     

  • Drewitt, J. W. E. Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. J. Phys. Condens. Matter 33, 503004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bernal, F. et al. Response of fs-laser-irradiated diamond by ultrafast electron diffraction. J. Phys. Chem. C 128, 18651–18657 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Heuser, B. et al. Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate. Sci. Rep. 14, 12239 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narayan, J. & Bhaumik, A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shi, J. et al. Double-shock compression pathways from diamond to BC8 carbon. Phys. Rev. Lett. 131, 146101 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen-Cong, K. et al. Extreme metastability of diamond and its transformation to the BC8 post-diamond phase of carbon. J. Phys. Chem. Lett. 15, 1152–1160 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lazicki, A. et al. Metastability of diamond ramp-compressed to 2 terapascals. Nature 589, 532–535 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Le Pape, S. et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett. 120, 245003 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Abu-Shawareb, H. et al. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett. 132, 065102 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • MacKinnon, A. J. et al. High-density carbon ablator experiments on the National Ignition Facility. Phys. Plasmas 21, 056318 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Falabella, S., Miller, J. S., Ceballos-Sanchez, A., Kucheyev, S. O. & Elhadj, S. Amorphous Carbon Coatings with Controlled Density and Composition. Lawrence Livermore National Laboratory Technical Report No. LLNL-TR-795754 (Lawrence Livermore National Laboratory, 2019).

  • Correa, A. A., Benedict, L. X., Young, D. A., Schwegler, E. & Bonev, S. A. First-principles multiphase equation of state of carbon under extreme conditions. Phys. Rev. B 78, 024101 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Willman, J. T. et al. Machine learning interatomic potential for simulations of carbon at extreme conditions. Phys. Rev. B 106, L180101 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Benedict, L. X. et al. Multiphase equation of state for carbon addressing high pressures and temperatures. Phys. Rev. B 89, 224109 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Schöttler, M., French, M., Cebulla, D. & Redmer, R. Free energy model for solid high-pressure phases of carbon. J. Phys.: Condens. Matter 28, 145401 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Vorberger, J., Plagemann, K.-U. & Redmer, R. The structure in warm dense carbon. High Energy Density Phys. 35, 100737 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cerantola, V. et al. Tetracarbonates in silicate melts may be at the origin of a deep carbon reservoir in the deep Earth. Commun. Earth Environ. 4, 67 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Knudson, M. D., Desjarlais, M. P. & Dolan, D. H. Shock-wave exploration of the high-pressure phases of carbon. Science 322, 1822–1825 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eggert, J. H. et al. Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 40–43 (2009).

    Article 

    Google Scholar
     

  • Togaya, M. Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79, 2474–2477 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bradley, D. K. et al. Shock compressing diamond to a conducting fluid. Phys. Rev. Lett. 93, 195506 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Raj, S. L. et al. Free electron laser measurement of liquid carbon reflectivity in the extreme ultraviolet. Photonics 7, 35 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, S. L. et al. Bonding in liquid carbon studied by time-resolved X-ray absorption spectroscopy. Phys. Rev. Lett. 94, 057407 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Principi, E. et al. Atomic and electronic structure of solid-density liquid carbon. Phys. Rev. Lett. 125, 155703 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraus, D. et al. Probing the complex ion structure in liquid carbon at 100 GPa. Phys. Rev. Lett. 111, 255501 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraus, D. et al. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering. Phys. Plasmas 22, 056307 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fletcher, L. B. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photon. 9, 274–279 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hartley, N. J. et al. Liquid structure of shock-compressed hydrocarbons at megabar pressures. Phys. Rev. Lett. 121, 245501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorman, M. G. et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth. Sci. Rep. 8, 16927 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, S. et al. Quantitative analysis of diffraction by liquids using a pink-spectrum x-ray source. J. Synchrotron Radiat. 29, 1033–1042 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morard, G. et al. Structural evolution of liquid silicates under conditions in Super-Earth interiors. Nat. Commun. 15, 8483 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorman, M. G. et al. Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: quantitative structural analysis of liquid Sn. J. Appl. Phys. 135, 165902 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zastrau, U. et al. The high energy density scientific instrument at the European XFEL. J. Synchrotron Radiat. 28, 1393–1416 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Best, S., Wasley, J. B., de Tomas, C., Aghajamali, A., Suarez-Martinez, I. & Marks, N. A. Evidence for glass behavior in amorphous carbon. C 6, 50 (2020).

    CAS 

    Google Scholar
     

  • Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Correa, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willman, J. T. et al. Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions. J. Chem. Phys. 161, 084709 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molodets, A. M. Free energy of diamond. Combust. Explos. Shock Waves 34, 453–459 (1998).

    Article 

    Google Scholar
     

  • Ghiringhelli, L. M., Los, J. H., Meijer, E. J., Fasolino, A. & Frenkel, D. Modeling the phase diagram of carbon. Phys. Rev. Lett. 94, 145701 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gust, W. H. Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon. Phys. Rev. B 22, 4744–4756 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hubbell, J. H. et al. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4, 471–538 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Morawietz, T., Singraber, A., Dellago, C. & Behler, J. How van der Waals interactions determine the unique properties of water. Proc. Natl Acad. Sci. USA 113, 8368–8373 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singraber, A., Morawietz, T., Behler, J. & Dellago, C. Parallel multistream training of high-dimensional neural network potentials. J. Chem. Theory Comput. 15, 3075–3092 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schörner, M., Rüter, H. R., French, M. & Redmer, R. Extending ab initio simulations for the ion-ion structure factor of warm dense aluminum to the hydrodynamic limit using neural network potentials. Phys. Rev. B 105, 174310 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dornheim, T. et al. The static local field correction of the warm dense electron gas: an ab initio path integral Monte Carlo study and machine learning representation. J. Chem. Phys. 151, 194104 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments