Hirsch, A. The era of carbon allotropes. Nat. Mater. 9, 868–871 (2010).
Savvatimskiy, A. I. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963-2003). Carbon 43, 1115–1142 (2005).
Hull, C. J., Raj, S. L. & Saykally, R. J. The liquid state of carbon. Chem. Phys. Lett. 749, 137341 (2020).
Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky?. Nature 292, 435–436 (1981).
Helled, R., Podolak, M. & Vos, E. Methane planets and their mass–radius relation. Astrophys. J. Lett. 805, L11 (2015).
Dufour, P., Liebert, J., Fontaine, G. & Behara, N. White dwarf stars with carbon atmospheres. Nature 450, 522–524 (2007).
de Heer, W. A. et al. Liquid carbon, carbon-glass beads, and the crystallization of carbon nanotubes. Science 307, 907–910 (2005).
Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012).
Zylstra, A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022).
Baluch, A. H., Park, Y. & Kim, C. G. Hypervelocity impact on carbon/epoxy composites in low Earth orbit environment. Compos. Struct. 96, 554–560 (2013).
Drewitt, J. W. E. Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. J. Phys. Condens. Matter 33, 503004 (2021).
Bernal, F. et al. Response of fs-laser-irradiated diamond by ultrafast electron diffraction. J. Phys. Chem. C 128, 18651–18657 (2024).
Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).
Heuser, B. et al. Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate. Sci. Rep. 14, 12239 (2024).
Narayan, J. & Bhaumik, A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).
Shi, J. et al. Double-shock compression pathways from diamond to BC8 carbon. Phys. Rev. Lett. 131, 146101 (2023).
Nguyen-Cong, K. et al. Extreme metastability of diamond and its transformation to the BC8 post-diamond phase of carbon. J. Phys. Chem. Lett. 15, 1152–1160 (2024).
Lazicki, A. et al. Metastability of diamond ramp-compressed to 2 terapascals. Nature 589, 532–535 (2020).
Le Pape, S. et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett. 120, 245003 (2018).
Abu-Shawareb, H. et al. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett. 132, 065102 (2024).
MacKinnon, A. J. et al. High-density carbon ablator experiments on the National Ignition Facility. Phys. Plasmas 21, 056318 (2014).
Falabella, S., Miller, J. S., Ceballos-Sanchez, A., Kucheyev, S. O. & Elhadj, S. Amorphous Carbon Coatings with Controlled Density and Composition. Lawrence Livermore National Laboratory Technical Report No. LLNL-TR-795754 (Lawrence Livermore National Laboratory, 2019).
Correa, A. A., Benedict, L. X., Young, D. A., Schwegler, E. & Bonev, S. A. First-principles multiphase equation of state of carbon under extreme conditions. Phys. Rev. B 78, 024101 (2008).
Willman, J. T. et al. Machine learning interatomic potential for simulations of carbon at extreme conditions. Phys. Rev. B 106, L180101 (2022).
Benedict, L. X. et al. Multiphase equation of state for carbon addressing high pressures and temperatures. Phys. Rev. B 89, 224109 (2014).
Schöttler, M., French, M., Cebulla, D. & Redmer, R. Free energy model for solid high-pressure phases of carbon. J. Phys.: Condens. Matter 28, 145401 (2016).
Vorberger, J., Plagemann, K.-U. & Redmer, R. The structure in warm dense carbon. High Energy Density Phys. 35, 100737 (2020).
Cerantola, V. et al. Tetracarbonates in silicate melts may be at the origin of a deep carbon reservoir in the deep Earth. Commun. Earth Environ. 4, 67 (2023).
Knudson, M. D., Desjarlais, M. P. & Dolan, D. H. Shock-wave exploration of the high-pressure phases of carbon. Science 322, 1822–1825 (2008).
Eggert, J. H. et al. Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 40–43 (2009).
Togaya, M. Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79, 2474–2477 (1997).
Bradley, D. K. et al. Shock compressing diamond to a conducting fluid. Phys. Rev. Lett. 93, 195506 (2004).
Raj, S. L. et al. Free electron laser measurement of liquid carbon reflectivity in the extreme ultraviolet. Photonics 7, 35 (2020).
Johnson, S. L. et al. Bonding in liquid carbon studied by time-resolved X-ray absorption spectroscopy. Phys. Rev. Lett. 94, 057407 (2005).
Principi, E. et al. Atomic and electronic structure of solid-density liquid carbon. Phys. Rev. Lett. 125, 155703 (2020).
Kraus, D. et al. Probing the complex ion structure in liquid carbon at 100 GPa. Phys. Rev. Lett. 111, 255501 (2013).
Kraus, D. et al. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering. Phys. Plasmas 22, 056307 (2015).
Fletcher, L. B. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photon. 9, 274–279 (2015).
Hartley, N. J. et al. Liquid structure of shock-compressed hydrocarbons at megabar pressures. Phys. Rev. Lett. 121, 245501 (2018).
Gorman, M. G. et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth. Sci. Rep. 8, 16927 (2018).
Singh, S. et al. Quantitative analysis of diffraction by liquids using a pink-spectrum x-ray source. J. Synchrotron Radiat. 29, 1033–1042 (2022).
Morard, G. et al. Structural evolution of liquid silicates under conditions in Super-Earth interiors. Nat. Commun. 15, 8483 (2024).
Gorman, M. G. et al. Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: quantitative structural analysis of liquid Sn. J. Appl. Phys. 135, 165902 (2024).
Zastrau, U. et al. The high energy density scientific instrument at the European XFEL. J. Synchrotron Radiat. 28, 1393–1416 (2021).
Best, S., Wasley, J. B., de Tomas, C., Aghajamali, A., Suarez-Martinez, I. & Marks, N. A. Evidence for glass behavior in amorphous carbon. C 6, 50 (2020).
Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005).
Correa, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006).
Willman, J. T. et al. Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions. J. Chem. Phys. 161, 084709 (2024).
Molodets, A. M. Free energy of diamond. Combust. Explos. Shock Waves 34, 453–459 (1998).
Ghiringhelli, L. M., Los, J. H., Meijer, E. J., Fasolino, A. & Frenkel, D. Modeling the phase diagram of carbon. Phys. Rev. Lett. 94, 145701 (2005).
Kraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016).
Gust, W. H. Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon. Phys. Rev. B 22, 4744–4756 (1980).
Hubbell, J. H. et al. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4, 471–538 (1975).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Morawietz, T., Singraber, A., Dellago, C. & Behler, J. How van der Waals interactions determine the unique properties of water. Proc. Natl Acad. Sci. USA 113, 8368–8373 (2016).
Singraber, A., Morawietz, T., Behler, J. & Dellago, C. Parallel multistream training of high-dimensional neural network potentials. J. Chem. Theory Comput. 15, 3075–3092 (2019).
Schörner, M., Rüter, H. R., French, M. & Redmer, R. Extending ab initio simulations for the ion-ion structure factor of warm dense aluminum to the hydrodynamic limit using neural network potentials. Phys. Rev. B 105, 174310 (2022).
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Dornheim, T. et al. The static local field correction of the warm dense electron gas: an ab initio path integral Monte Carlo study and machine learning representation. J. Chem. Phys. 151, 194104 (2019).