Saturday, July 12, 2025
No menu items!
HomeNatureThe spatiotemporal distribution of human pathogens in ancient Eurasia

The spatiotemporal distribution of human pathogens in ancient Eurasia

  • Lewis, C. M. Jr, Akinyi, M. Y., DeWitte, S. N. & Stone, A. C. Ancient pathogens provide a window into health and well-being. Proc. Natl Acad. Sci. USA 120, e2209476119 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bartlett, A., Padfield, D., Lear, L., Bendall, R. & Vos, M. A comprehensive list of bacterial pathogens infecting humans. Microbiology https://doi.org/10.1099/mic.0.001269 (2022).

  • Barrett, R., Kuzawa, C. W., McDade, T. & Armelagos, G. J. Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu. Rev. Anthropol. 27, 247–271 (1998).

    Article 

    Google Scholar
     

  • Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article 
    CAS 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Volk, A. A. & Atkinson, J. A. Infant and child death in the human environment of evolutionary adaptation. Evol. Hum. Behav. 34, 182–192 (2013).

  • Harper, K. Plagues Upon the Earth: Disease and the Course of Human History (Princeton Univ. Press, 2021).

  • Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 15, 379–393 (2014).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kerner, G. et al. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. Cell Genom. 3, 100248 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Page, A. E. et al. Reproductive trade-offs in extant hunter-gatherers suggest adaptive mechanism for the Neolithic expansion. Proc. Natl Acad. Sci. USA 113, 4694–4699 (2016).

    Article 
    CAS 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Rascovan, N. et al. Emergence and spread of basal lineages of Yersinia pestis during the Neolithic decline. Cell 176, 295–305.e10 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fuchs, K. et al. Infectious diseases and Neolithic transformations: evaluating biological and archaeological proxies in the German loess zone between 5500 and 2500 BCE. Holocene 29, 1545–1557 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Abegg, C., Desideri, J., Dutour, O. & Besse, M. More than the sum of their parts: reconstituting the paleopathological profile of the individual and commingled Neolithic populations of western Switzerland. Archaeol. Anthropol. Sci. 13, 59 (2021).

  • Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011).

    Article 
    CAS 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    Article 
    CAS 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Vågene, Å. J. et al. Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations. Nat. Commun. 13, 1195 (2022).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Duggan, A. T. et al. 17th Century variola virus reveals the recent history of smallpox. Curr. Biol. 26, 3407–3412 (2016).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 369, eaaw8977 (2020).

    Article 

    Google Scholar
     

  • Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature 557, 418–423 (2018).

  • Kocher, A. et al. Ten millennia of hepatitis B virus evolution. Science 374, 182–188 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Krause-Kyora, B. et al. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. eLife 7, e36666 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Guellil, M. et al. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc. Natl Acad. Sci. USA 115, 10422–10427 (2018).

    Article 
    CAS 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Schuenemann, V. J. et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341, 179–183 (2013).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Guellil, M. et al. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia. Sci. Adv. 8, eabo4435 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • van Dorp, L. et al. Plasmodium vivax malaria viewed through the lens of an eradicated European strain. Mol. Biol. Evol. 37, 773–785 (2020).

    Article 

    Google Scholar
     

  • Key, F. M. et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 4, 324–333 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Mühlemann, B. et al. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proc. Natl Acad. Sci. USA 115, 7557–7562 (2018).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Bonczarowska, J. H. et al. Pathogen genomics study of an early medieval community in Germany reveals extensive co-infections. Genome Biol. 23, 250 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Abdoun, A., Amir, N. & Fatima, M. Thanatomicrobiome in forensic medicine. New Microbiol. 46, 236–245 (2023).

    CAS 

    Google Scholar
     

  • Burcham, Z. M. et al. A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables. Nat. Microbiol. 9, 595–613 (2024).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Macleod, R. et al. Lethal plague outbreaks in Lake Baikal Hunter-gatherers 5500 years ago. Preprint at bioRxiv https://doi.org/10.1101/2024.11.13.623490 (2024).

  • Susat, J. et al. A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Rep. 35, 109278 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Swali, P. et al. Ancient Borrelia genomes document the evolutionary history of louse-borne relapsing fever. Science 388, 836–846 (2025).

  • Avanzi, C. et al. Red squirrels in the British Isles are infected with leprosy bacilli. Science 354, 744–747 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Hennius, A. Outlanders?: Resource Colonisation, Raw Material Exploitation and Networks in Middle Iron Age Sweden. PhD thesis, Uppsala Univ. (2021).

  • Urban, C. et al. Ancient Mycobacterium leprae genome reveals medieval English red squirrels as animal leprosy host. Curr. Biol. 34, 2221–2230.e8 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pfrengle, S. et al. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biol. 19, 220 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bulach, D. M. et al. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc. Natl Acad. Sci. USA 103, 14560–14565 (2006).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Rees, C. E., Swift, B. M. & Haldar, P. State-of-the-art detection of Mycobacterium tuberculosis in blood during tuberculosis infection using phage technology. Int. J. Infect. Dis. 141S, 106991 (2024).

    Article 

    Google Scholar
     

  • Steinegger, M. & Salzberg, S. L. Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank. Genome Biol. 21, 115 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M. & Snow, R. W. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect. Dis. 4, 327–336 (2004).

    Article 
    PubMed Central 

    Google Scholar
     

  • Davidyants, V. A. et al. Role of malaria partners in malaria elimination in Armenia. Malar. J. 18, 178 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Roberto, P. et al. Torque teno virus (TTV): a gentle spy virus of immune status, predictive marker of seroconversion to COVID-19 vaccine in kidney and lung transplant recipients. J. Med. Virol. 95, e28512 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • İnce, İ. A., Özcan, O., Ilter-Akulke, A. Z., Scully, E. D. & Özgen, A. Invertebrate iridoviruses: a glance over the last decade. Viruses 10, 161 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Singer, M., Bulled, N., Ostrach, B. & Mendenhall, E. Syndemics and the biosocial conception of health. Lancet 389, 941–950 (2017).

    Article 

    Google Scholar
     

  • Zasada, A. A., Zaleska, M., Podlasin, R. B. & Seferynska, I. The first case of septicemia due to nontoxigenic Corynebacterium diphtheriae in Poland: case report. Ann. Clin. Microbiol. Antimicrob. 4, 8 (2005).

    Article 
    PubMed Central 

    Google Scholar
     

  • Han, X. Y., Tarrand, J. J., Dickey, B. F. & Esteva, F. J. Helicobacter pylori bacteremia with sepsis syndrome. J. Clin. Microbiol. 48, 4661–4663 (2010).

    Article 
    PubMed Central 

    Google Scholar
     

  • Andrades Valtueña, A. et al. Stone Age genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl Acad. Sci. USA 119, e2116722119 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Spyrou, M. A. et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat. Commun. 9, 2234 (2018).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Demeure, C. et al. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect. 21, 202–212 (2019).

    Article 

    Google Scholar
     

  • Sun, Y.-C., Jarrett, C. O., Bosio, C. F. & Hinnebusch, B. J. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe 15, 578–586 (2014).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Margaryan, A. et al. Ancient pathogen DNA in human teeth and petrous bones. Ecol. Evol. 8, 3534–3542 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article 
    CAS 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Meltzer, D. J. First Peoples in a New World: Colonizing Ice Age America (Univ. California Press, 2009).

  • Collen, E. J., Johar, A. S., Teixeira, J. C. & Llamas, B. The immunogenetic impact of European colonization in the Americas. Front. Genet. 13, 918227 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Barrie, W. et al. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations. Nature 625, 321–328 (2024).

  • Cutler, S. J. Relapsing fever–a forgotten disease revealed. J. Appl. Microbiol. 108, 1115–1122 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bland, D. M., Long, D., Rosenke, R. & Hinnebusch, B. J. Yersinia pestis can infect the Pawlowsky glands of human body lice and be transmitted by louse bite. PLoS Biol. 22, e3002625 (2024).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ellwanger, J. H. & Chies, J. A. B. Zoonotic spillover: understanding basic aspects for better prevention. Genet. Mol. Biol. 44, e20200355 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Michelsen, C. et al. MetaDMG—a fast and accurate ancient DNA damage toolkit for metagenomic data. Preprint at bioRxiv https://doi.org/10.1101/2022.12.06.519264 (2022).

  • Warinner, C. et al. A robust framework for microbial archaeology. Annu. Rev. Genomics Hum. Genet. 18, 321–356 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Renaud, G., Hanghøj, K., Willerslev, E. & Orlando, L. gargammel: a sequence simulator for ancient DNA. Bioinformatics 33, 577–579 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Carbonetto, P., Sarkar, A., Wang, Z. & Stephens, M. Non-negative matrix factorization algorithms greatly improve topic model fits. Preprint at https://doi.org/10.48550/ARXIV.2105.13440 (2021).

  • WHO. Zoonoses: key facts. World Health Organization https://www.who.int/news-room/fact-sheets/detail/zoonoses (2020).

  • Zhao, K. et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: a Bayesian ensemble algorithm. Remote Sens. Environ. 232, 111181 (2019).

    Article 

    Google Scholar
     

  • Fellows Yates, J. A. et al. Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir. Sci. Data 8, 31 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H. & Zimmermann, N. E. CHELSA-TraCE21k–high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum. Clim. Past 19, 439–456 (2023).

    Article 

    Google Scholar
     

  • Schmid, C. & Schiffels, S. Estimating human mobility in Holocene western Eurasia with large-scale ancient genomic data. Proc. Natl Acad. Sci. USA 120, e2218375120 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Allentoft, M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311 (2024).

  • Racimo, F. et al. The spatiotemporal spread of human migrations during the European Holocene. Proc. Natl Acad. Sci. USA 117, 8989–9000 (2020).

    Article 
    CAS 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).

  • Bachl, F. E., Lindgren, F., Borchers, D. L. & Illian, J. B. inlabru: an R package for Bayesian spatial modelling from ecological survey data. Methods Ecol. Evol. 10, 760–766 (2019).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); https://www.R-project.org/

  • Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar
     

  • Massicotte, P. & South, A. rnaturalearth: World Map data from Natural Earth. OpenSci https://docs.ropensci.org/rnaturalearth/ (2025).

  • Hollister, J. et al. elevatr: access elevation data from various APIs. Zenodo https://doi.org/10.5281/zenodo.8335450 (2023).

  • RELATED ARTICLES

    Most Popular

    Recent Comments