Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).
Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).
Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).
Kokubo, E. & Ida, S. Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000).
Levison, H. F., Kretke, K. A. & Duncan, M. J. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015).
Johansen, A. et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. 7, eabc0444 (2021).
Woo, J. M. Y., Morbidelli, A., Grimm, S. L., Stadel, J. & Brasser, R. Terrestrial planet formation from a ring. Icarus 396, 115497 (2023).
Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).
Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).
Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).
Greer, J. et al. 4.46 Ga zircons anchor chronology of lunar magma ocean. Geochem. Perspect. Lett. 27, 49–53 (2023).
Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).
Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).
Brasser, R., Werner, S. C. & Mojzsis, S. J. Impact bombardment chronology of the terrestrial planets from 4.5 Ga to 3.5 Ga. Icarus 338, 113514 (2020).
Nesvorný, D., Roig, F. V. & Deienno, R. The role of early giant-planet instability in terrestrial planet formation. Astron. J 161, 50 (2021).
Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Geochemistry 69, 101–125 (2009).
Neukum, G. & Ivanov, B. A. in Hazards Due to Comets and Asteroids (eds Gehrels, T., Matthews, M. S. & Schumann, A. M.) 359–416 (Univ. Arizona Press, 1994). A seminal work on the development of lunar crater chronologies.
Stöffler, D. & Ryder, G. in Chronology and Evolution of Mars (eds Kallenbach, R., Geiss, J. & Hartmann, W. K.) 9–54 (Springer, 2001).
Nemchin, A. A. et al. Ages of lunar impact breccias: limits for timing of the Imbrium impact. Geochemistry 81, 125683 (2021).
Trowbridge, A. J., Johnson, B. C., Freed, A. M. & Melosh, H. J. Why the lunar South Pole-Aitken Basin is not a mascon. Icarus 352, 113995 (2020).
Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon’s South Pole-Aitken basin? Icarus 338, 113430 (2020).
Joy, K. H. et al. Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin. Nat. Astron. 9, 55–65 (2025).
Marchi, S. et al. Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nat. Geosci. 14, 827–831 (2021).
Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005). An integrated approach to study impact rates on the Moon resulting from planetary instabilities.
Day, J. M. D., Brandon, A. D. & Walker, R. J. Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Rev. Mineral. Geochem. 81, 161–238 (2016). This paper presents a comprehensive review on the highly siderophile element budgets of terrestrial bodies and their implications for planetary formation processes.
Glass, B. P. & Simonson, B. M. Distal Impact Ejecta Layers: A Record of Large Impacts in Sedimentary Deposits (Springer, 2013). A fundamental resource about impact spherule layers.
Johnson, B. C. et al. Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus 271, 350–359 (2016).
Bottke, W. et al. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005).
Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).
Deienno, R., Izidoro, A., Nesvorný, D. & Bottke, W. F. Size-frequency distribution of S-complex implanted asteroids. In Asteroids, Comets, Meteors Conference 2023 (LPI Contrib. No. 2851) https://www.hou.usra.edu/meetings/acm2023/pdf/2549.pdf (2023).
Nesvorný, D. et al. Formation of lunar basins from impacts of leftover planetesimals. Astrophys. J. Lett. 941, L9 (2022). This work presents some of the most successful simulations of terrestrial planet formation so far.
Liu, S. T. et al. The synergetic effect of the potential Procellarum and the South-Pole Aitken impact on the formation of the lunar nearside-farside asymmetries. In 54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806) https://www.hou.usra.edu/meetings/lpsc2023/pdf/1251.pdf (2023).
Ballantyne, H. A. et al. Investigating the feasibility of an impact-induced Martian dichotomy. Icarus 392, 115395 (2023).
Nimmo, F., Kleine, T. & Morbidelli, A. Tidally driven remelting around 4.35 billion years ago indicates the Moon is old. Nature 636, 598–602 (2024).
Benz, W., Slattery, W. L. & Cameron, A. G. W. The origin of the Moon and the single-impact hypothesis I. Icarus 66, 515–535 (1986). The first modern attempt, to our knowledge, to simulate the formation of the Moon from a giant impact.
Canup, R. M. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004).
Asphaug, E. Similar-sized collisions and the diversity of planets. Geochemistry 70, 199–219 (2010).
Stewart, S. T. & Leinhardt, Z. M. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J. 751, 32 (2012).
Genda, H., Brasser, R. & Mojzsis, S. J. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 480, 25–32 (2017).
Kegerreis, J. A. et al. Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and SWIFT. Mon. Not. R. Astron. Soc. 487, 5029–5040 (2019).
Nakajima, M. et al. Scaling laws for the geometry of an impact-induced magma ocean. Earth Planet. Sci. Lett. 568, 116983 (2021).
Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).
Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).
Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008).
Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. Implications of an impact origin for the martian hemispheric dichotomy. Nature 453, 1220–1223 (2008).
Jutzi, M. SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015).
Emsenhuber, A., Jutzi, M. & Benz, W. SPH calculations of Mars-scale collisions: the role of the equation of state, material rheologies, and numerical effects. Icarus 301, 247–257 (2018).
Itcovitz, J. P., Rae, A. S. P., Davison, T. M., Collins, G. S. & Shorttle, O. The distribution of impactor core material during large impacts on Earth-like planets. Planet. Sci. J. 5, 90 (2024).
Chou, C.-L., Fractionation of siderophile elements in the earth’s upper mantle. In Proc. 9th Lunar and Planetary Science Conference 219–230 (Lunar and Planetary Institute, 1978).
Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018). This paper was the first, to our knowledge, to suggest that the total late-accreted mass on Earth can substantially exceed the traditional value of 0.5% Earth mass, based on the systematics of smoothed-particle hydrodynamics simulations.
Citron, R. I. & Stewart, S. T. Large impacts onto the early Earth: planetary sterilization and iron delivery. Planet. Sci. J. 3, 116 (2022).
Deguen, R., Landeau, M. & Olson, P. Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).
Landeau, M. et al. Metal-silicate mixing by large Earth-forming impacts. Earth Planet. Sci. Lett. 564, 116888 (2021).
Lavorel, G. & Le Bars, M. Sedimentation of particles in a vigorously convecting fluid. Phys. Rev. E 80, 046324 (2009).
Korenaga, J. & Marchi, S. Vestiges of impact-driven three-phase mixing in the chemistry and structure of Earth’s mantle. Proc. Natl Acad. Sci. USA 120, e23091811120 (2023). This paper was the first, to our knowledge, to suggest the possibility of three-phase dynamics as a consequence of large late accretion impacts and its critical role in the mantle highly siderophile element budget.
Maier, W. D. et al. Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).
Puchtel, I. S., Blichert-Toft, J., Touboul, M. & Walker, R. J. 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle. Geochim. Cosmochim. Acta 228, 1–26 (2018).
van de Löcht, J. et al. Earth’s oldest mantle peridotites show entire record of late accretion. Geology 46, 199–202 (2018).
Reimink, J. R. et al. Tungsten isotope composition of Archean crustal reservoirs and implications for terrestrial μ182W evolution. Geochem. Geophys. Geosyst. 21, e2020GC009155 (2020).
Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–488 (2016).
Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).
Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).
Yuan, Q. et al. Moon-forming impactor as a source of Earth’s basal mantle anomalies. Nature 623, 95–99 (2023).
Rizo, H. et al. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).
Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).
Ferrick, A. L. & Korenaga, J. Long-term core–mantle interaction explains W-He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).
Korenaga, J. & Marchi, S. Core-mantle chemical interaction via convection within thermochemical piles. Geochem. Perspect. Lett. 32, 34–38 (2024).
Marchi, S., Rufu, R. & Korenaga, J. Long-lived volcanic resurfacing of Venus driven by early collisions. Nat. Astron. 7, 1180–1187 (2023).
Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007).
Miyazaki, Y. & Korenaga, J. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature 603, 86–90 (2022).
Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995). This study was the first, to our knowledge, to delineate the regime of stagnant lid convection based on an elegant scaling analysis on the modes of mantle convection.
Reese, C. C., Solomatov, V. S. & Moresi, L.-N. Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus. Icarus 139, 67–80 (1999).
Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the terrestrial planets. Icarus 197, 291–306 (2008).
Bottke,W. F. et al. On asteroid impacts, crater scaling laws, and a proposed younger surface age for Venus. In 47th Lunar and Planetary Science Conference https://www.hou.usra.edu/meetings/lpsc2016/pdf/2036.pdf (2016).
Parmentier, E. M. & Hess, P. C. Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992).
Turcotte, D. L. An episodic hypothesis for Venusian tectonics. J. Geophys. Res. Planets 98, 17061–17068 (1993).
Moresi, L. & Solomatov, V. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133, 669–682 (1998).
Armann, M. & Tackley, P. J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. Planets 117, E12003 (2012).
Smrekar, S. E., Davaille, A. & Sotin, C. Venus interior structure and dynamics. Space Sci. Rev. 214, 88 (2018).
Wilhelms, D. E. & Squyers, S. W. The Martian hemispheric dichotomy may be due to a giant impact. Nature 309, 138–140 (1984).
Frey, H. & Schultz, R. A. Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett. 15, 229–232 (1988).
Zhong, S. & Zuber, M. T. Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001).
Roberts, J. H. & Zhong, S. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. Planets 111, E06013 (2006).
Elkins-Tanton, L. T., Hess, P. C. & Parmentier, E. M. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. Planets 110, E12S01 (2005).
Thiriet, M., Michaut, C., Breuer, D. & Plesa, A.-C. Hemispheric dichotomy in lithospheric thickness on Mars caused by differences in crustal structure and composition. J. Geophys. Res. Planets 123, 823–848 (2018).
Bonnet Gibet, V., Michaut, C., Wieczorek, M. & Lognonne, P. A positive feedback between crustal thickness and melt extraction for the origin of the Martian dichotomy. J. Geophys. Res. Planets 127, e2022JE007472 (2022).
Citron, R. I., Manga, M. & Tan, E. A hybrid origin of the Martian crustal dichotomy: degree-1 convection antipodal to a giant impact. Earth Planet. Sci. Lett. 491, 58–66 (2018).
Roberts, J. H., Lillis, R. J. & Manga, M. Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. Planets 114, E04009 (2009).
Marchi, S., Walker, R. J. & Canup, R. M. A compositionally heterogeneous martian mantle due to late accretion. Sci. Adv. 6, eaay2338 (2020).
Smith, D. E. et al. Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012).
Zolotov, M. Y. et al. The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets 118, 138–146 (2013).
Frank, E. A. et al. Evaluating an impact origin for Mercury’s high-magnesium region. J. Geophys. Res. Planets 122, 614–632 (2017).
Cartier, C. & Wood, B. J. The role of reducing conditions in building Mercury. Elements 15, 39–45 (2019).
Benz, W. et al. The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007).
Clement, M. S., Chambers, J. E., Kaib, N. A., Raymond, S. N. & Jackson, A. P. Mercury’s formation within the early instability scenario. Icarus 394, 115445 (2023).
Ebel, D. S. & Stewart, S. T. in Mercury: The View after MESSENGER (eds Solomon, S. C., Nittler, L. R. & Anderson, B. J.) 497–515 (Cambridge Univ. Press, 2018).
Gabriel, T. S. J. & Cambioni, S. The role of giant impacts in planet formation. Annu. Rev. Earth Planet. Sci. 51, 671–695 (2023).
Roberts, J. H. & Arkani-Hamed, J. Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res. Planets 119, 729–744 (2014).
Gillmann, C., Golabek, G. J. & Tackley, P. J. Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016).
Padovan, S., Tosi, N., Plesa, A.-C. & Ruedas, T. Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 8, 1945 (2017).
Sleep, N. H. & Lowe, D. R. Physics of crustal fracturing and chert dike formation triggered by asteroid impact, ~3.26 Ga, Barberton greenstone belt, South Africa. Geochem. Geophys. Geosyst. 15, 1054–1070 (2014). This paper points to an intriguing connection between late accretion impacts and surface tectonics based on geological observations and geophysical arguments.
O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).
O’Neill, C., Marchi, S., Bottke, W. & Fu, R. The role of impacts on Archaean tectonics. Geology 48, 174–178 (2020).
Karato, S. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).
Bercovici, D., Tackley, P. J. & Ricard, Y. in Treatise on Geophysics 2nd edn, Vol. 7 (ed. Schubert, G.) 271–318 (Elsevier, 2015).
Korenaga, J. Plate tectonics and surface environment: role of the oceanic upper mantle. Earth-Sci. Rev. 205, 103185 (2020).
Melosh, H. J. & Vickery, A. M. Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989).
Ahrens, T. J. Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21, 525–555 (1993).
Genda, H. & Abe, Y. Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164, 149–162 (2003).
Genda, H. & Abe, Y. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005).
Lock, S. J. & Stewart, S. T. Atmospheric loss in giant impacts depends on preimpact surface conditions. Planet. Sci. J. 5, 28 (2024).
Svetsov, V. V. Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars. Solar Syst. Res. 41, 28–41 (2007).
de Niem, D., Kührt, E., Morbidelli, A. & Motschmann, U. Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus 221, 495–507 (2012).
Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).
Albarede, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).
Alexander, C. M. O. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).
Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313-314, 56–66 (2012).
Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013).
Joiret, S., Raymond, S. N., Avice, G. & Clement, M. S. Crash Chronicles: relative contribution from comets and carbonaceous asteroids to Earth’s volatile budget in the context of an Early Instability. Icarus 414, 116032 (2024).
Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).
Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).
Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).
Burkhardt, C. et al. Terrestrial planet formation from lost inner solar system material. Sci. Adv. 7, eabj7601 (2021).
Varas-Reus, M. I., König, S., Yierpan, A., Lorand, J.-P. & Schoenberg, R. Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System. Nat. Geosci. 12, 779–782 (2019).
Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).
Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).
Bermingham, K. R., Worsham, E. A. & Walker, R. J. New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics. Earth Planet. Sci. Lett. 487, 221–229 (2018).
Worsham, E. A. & Thorsten, K. Late accretionary history of Earth and Moon preserved in lunar impactites. Sci. Adv. 7, eabh2837 (2021).
Marty, B. Meteoritic noble gas constraints on the origin of terrestrial volatiles. Icarus 381, 115020 (2022).
Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).
Li, J., Bergin, E. A., Blake, G. A., Ciesla, F. J. & Hirschmann, M. M. Earth’s carbon deficit caused by early loss through irreversible sublimation. Sci. Adv. 7, eabd3632 (2021).
Hirschmann, M. M., Bergin, E. A., Blake, G. A., Ciesla, F. J. & Li, J. Early volatile depletion on planetesimals inferred from C–S systematics of iron meteorite parent bodies. Proc. Natl Acad. Sci. USA 118, e2026779118 (2021). This paper demonstrates that volatile loss in growing planetesimals can start early based on the systematics of iron meteorite compositions.
Newcombe, M. E. et al. Degassing of early-formed planetesimals restricted water delivery to Earth. Nature 615, 854–857 (2023).
Bower, D. J., Hakim, K., Sossi, P. A. & Sanan, P. Retention of water in terrestrial magma oceans and carbon-rich early atmospheres. Planet. Sci. J. 3, 93 (2022).
Salvador, A. & Samuel, H. Convective outgassing efficiency in planetary magma oceans: insights from computational fluid dynamics. Icarus 390, 115265 (2023).
Hirschmann, M. M. Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341-344, 48–57 (2012).
Gaillard, F. et al. Redox controls during magma ocean degassing. Earth Planet. Sci. Lett. 577, 117255 (2022).
Sossi, P. A., Tollan, P. M. E., Badro, J. & Bower, D. J. Solubility of water in peridotite liquids and the prevalence of steam atmospheres on rocky planets. Earth Planet. Sci. Lett. 601, 117894 (2023).
Abe, Y. Physical state of the very early Earth. Lithos 30, 223–235 (1993). This paper presents the first, to our knowledge, serious effort to characterize the very early surface environments of Earth and Venus by modelling the evolution of the coupled atmosphere–ocean–mantle system.
Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).
Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. Planets 106, 1373–1399 (2001).
Kadoya, S., Krissansen-Totton, J. & Catling, D. C. Probable cold and alkaline surface environment of the Hadean Earth caused by impact ejecta weathering. Geochem. Geophys. Geosyst. 21, e2019GC008734 (2020).
Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precambrian Res. 359, 106178 (2021).
Maher, K. A. & Stevenson, D. J. Impact frustration of the origin of life. Nature 331, 612–614 (1988).
Benner, S. A. et al. When did life likely emerge on Earth in an RNA-first process? ChemSystemsChem 2, e1900035 (2019).
Sleep, N. H., Zahnle, K. J., Kasting, J. F. & Morowitz, H. J. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142 (1989). This is the first study, to our knowledge, to quantitatively discuss the effects of impacts on early Earth.
Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020). This paper presents a comprehensive set of calculations to show that late accretion impacts can produce a long-lived transient reducing atmosphere.
Wogan, N. F., Catling, D. C., Zahnle, K. J. & Lupu, R. Origin-of-life molecules in the atmosphere after big impacts on the early Earth. Planet. Sci. J. 4, 169 (2023).
Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).
McCollom, T. M. Miller-Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu. Rev. Earth Planet. Sci. 41, 207–229 (2013).
Itcovitz, J. P. et al. Reduced atmospheres of post-impact worlds: the early Earth. Planet. Sci. J. 3, 115 (2022).
Henningsen, E. L., Korenaga, J. & Marchi, S. Impact-driven redox stratification of Earth’s mantle. J. Geophys. Res. Solid Earth 130, e2024JB030817 (2025).
Pham, L. B. S., Karatekin, O. & Dehant, V. Effects of impacts on the atmospheric evolution: comparison between Mars, Earth, and Venus. Planet. Space Sci. 59, 1087–1092 (2011).
Schlichting, H. E., Sari, R. & Yalinewich, A. Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247, 81–94 (2015).
Sinclair, C. A., Wyatt, M. C., Morbidelli, A. & Nesvorny, D. Evolution of the Earth’s atmosphere during Late Veneer accretion. Mon. Not. R. Astron. Soc. 499, 5334–5362 (2020). This modelling study suggests that volatile delivery and atmospheric removal by late accretion impacts can, despite their stochastic nature, compensate for each other to reproduce the present-day mass of Earth’s atmosphere.
Miyazaki, Y. & Korenaga, J. Inefficient water degassing inhibits ocean formation on rocky planets: an insight from self-consistent mantle degassing models. Astrobiology 22, 713–734 (2022).
Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).
Segura, T. L., Toon, O. B., Colaprete, A. & Zahnle, K. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002).
Segura, T. L., Toon, O. B. & Colaprete, A. Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. Planets 113, E11007 (2008).
Segura, T. L., McKay, C. P. & Toon, O. B. An impact-induced, stable, runaway climate on Mars. Icarus 220, 144–148 (2012).
Wordsworth, R. D. Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett. 447, 103–111 (2016).
Kegerreis, J. A. et al. Atmospheric erosion by giant impacts onto terrestrial planets: a scaling law for any speed, angle, mass, and density. Astrophys. J. Lett. 901, L31 (2020).
Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014). This paper presents the first, to our knowledge, quantitative model for the impact flux on the early Earth.
Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).
Wiggins, S. E., Johnson, B. C., Bowling, T. J., Melosh, H. J. & Silber, E. A. Impact fragmentation and the development of the deep lunar megaregolith. J. Geophys. Res. Planets 124, 941–957 (2019).
Wiggins, S. E., Johnson, B. C., Collins, G. S., Jay Melosh, H. & Marchi, S. Widespread impact-generated porosity in early planetary crusts. Nat. Commun. 13, 4817 (2022).
Abramov, O. & Kring, D. A. Numerical modeling of impact‐induced hydrothermal activity at the Chicxulub crater. Meteorit. Planet. Sci. 42, 93–112 (2007).
Abramov, O., Kring, D. A. & Mojzsis, S. J. The impact environment of the Hadean Earth. Geochemistry 73, 227–248 (2013).
Marchi, S., Alexander, A., Trowbridge, A. & Koeberl, C. Impact‐generated permeability and hydrothermal circulation at the Vredefort impact structure, South Africa. Earth Space Sci. 11, e2023EA003065 (2024).
Trowbridge, A. J., Marchi, S., Osinski, G. R. & Taron, J. M. Modeling of the impact‐generated hydrothermal system at the Haughton impact structure. J. Geophys. Res. Planets 129, e2023JE008267 (2024).
Alexander, A. M., Marchi, S., Johnson, B. C., Wiggins, S. E. & Kring, D. A. Impact‐generated fragmentation, porosity, and permeability within the Chicxulub impact structure. Earth Space Sci. 11, e2023EA003383 (2024).
Johnson, T. E. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022).
Kring, D. A. Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology 3, 133–152 (2003).
Osinski, G. R. et al. Impact-generated hydrothermal systems on Earth and Mars. Icarus 224, 347–363 (2013).
Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).
Marzo, G. A. et al. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667–683 (2010).
Sun, V. Z. & Milliken, R. E. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. J. Geophys. Res. Planets 120, 2293–2332 (2015).
Yen, A. S. et al. Formation of tridymite and evidence for a hydrothermal history at Gale crater, Mars. J. Geophys. Res. Planets 126, e2020JE006569 (2021).
Black, B. A. & Marchi, S. Buoyant impact partial melts on ancient Mars. J. Geophys. Res. Planets 129, e2023JE008040 (2024).
Hyodo, R., Genda, H. & Brasser, R. Modification of the composition and density of Mercury from late accretion. Icarus 354, 114064 (2021).
Denevi, B. W. et al. The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets 118, 891–907 (2013).
Chapman, C. R. et al. in Mercury: The View after MESSENGER (eds Solomon, S. C., Nittler, L. R. & Anderson, B. J.) 217–248 (Cambridge Univ. Press, 2018).
Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).
Raymond, S. N. et al. An upper limit on late accretion and water delivery in the TRAPPIST-1 exoplanet system. Nat. Astron. 6, 80–88 (2021).
Morrison, S. & Malhotra, R. Planetary chaotic zone clearing: destinations and timescales. Astrophys. J. 799, 41 (2015).
Öpik, E. J. Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R. Ir. Acad. A Math. Phys. Sci. 54, 165–199 (1951/1952).
Rampino, M. R. & Caldeira, K. The Goldilocks problem: climatic evolution and long-term habitability of terrestrial planets. Annu. Rev. Astron. Astrophys. 32, 83–114 (1994).
Kasting, J. F. & Catling, D. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003). This paper provides an accessible review of important concepts relevant to planetary habitability, with an emphasis on the role of the atmosphere.
Kopparapu, R. K. et al. Habitable zones around main sequence stars: new estimates. Astrophys. J. 765, 131 (2013).
Kite, E. S., Manga, M. & Gaidos, E. Geodynamics and rate of volcanism on massive Earth-like planets. Astrophys. J. 700, 1732–1749 (2009).
Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011).
O’Rourke, J. G. & Korenaga, J. Terrestrial planet evolution in the stagnant-lid regime: size effects and the formation of self-destabilizing crust. Icarus 221, 1043–1060 (2012).
Stewart, S. T. et al. A hydrocode EOS for pyrolitic mantles and magma oceans. In 53rd Lunar and Planetary Science Conference https://www.hou.usra.edu/meetings/lpsc2022/pdf/1535.pdf (2022).
Suer, T.-A. et al. Reconciling metal–silicate partitioning and late accretion in the Earth. Nat. Commun. 12, 2913 (2021).
Steenstra, E. S. et al. Partitioning of Ru, Pd, Ag, Re, Pt, Ir and Au between sulfide-, metal- and silicate liquid at highly reduced conditions: implications for terrestrial accretion and aubrite parent body evolution. Geochim. Cosmochim. Acta 336, 15–32 (2022).
Righter, K. et al. Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature. Meteorit. Planet. Sci. 50, 604–631 (2015).
Sleep, N. H. Asteroid bombardment and the core of Theia as possible sources for the Earth’s late veneer component. Geochem. Geophys. Geosyst. 17, 2623–2642 (2016).
Korenaga, J. & Spencer, C. J. in Treatise on Geochemistry 3rd edn, Vol. 2 (eds Anbar, A. & Weis, D.) 699–727 (Elsevier Science, 2025).
Grewal, D. S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat. Astron. 5, 356–364 (2021).
Zhu, M.-H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019).
Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).