Friday, January 23, 2026
No menu items!
HomeNatureThe potential for bridgmanite megacrysts to drive magma ocean segregation

The potential for bridgmanite megacrysts to drive magma ocean segregation

  • Cooper, R. & Kohlstedt, D. in High-Pressure Research in Geophysics Vol. 12 (eds Akimoto, S. & Manghnani, M. H.) 217–228 (Springer, 1982).

  • Montazerian, M. & Zanotto, E. D. Nucleation, growth, and crystallization in oxide glass-formers. A current perspective. Rev. Mineral. Geochem. 87, 405–429 (2022).

    Article 
    CAS 

    Google Scholar
     

  • James, P. F. Kinetics of crystal nucleation in silicate glasses. J. Non-Cryst. Solids 73, 517–540 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, J., Miyazaki, Y., Yuan, Q. & Du, Z. Deep mantle heterogeneities formed through a basal magma ocean contaminated by core exsolution. Nat. Geosci. 18, 1056–1062 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Solomatov, V. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 81–104 (Elsevier, 2015).

  • Solomatov, V. S. & Stevenson, D. J. Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J. Geophys. Res. Planets 98, 5375–5390 (1993).

    Article 

    Google Scholar
     

  • Monteux, J., Qaddah, B. & Andrault, D. Conditions for segregation of a crystal-rich layer within a convective magma ocean. J. Geophys. Res. Planets 128, e2023JE007805 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Patočka, V., Calzavarini, E. & Tosi, N. Settling of inertial particles in turbulent Rayleigh-Bénard convection. Phys. Rev. Fluids 5, 114304 (2020).

    Article 

    Google Scholar
     

  • Boukaré, C.-E. & Ricard, Y. Modeling phase separation and phase change for magma ocean solidification dynamics. Geochem. Geophys. Geosyst. 18, 3385–3404 (2017).

    Article 

    Google Scholar
     

  • Rose, L. A. & Brenan, J. M. Wetting properties of Fe-Ni-Co-Cu-O-S melts against olivine: implications for sulfide melt mobility. Econ. Geol. 96, 145–157 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Fokin, V. M., Zanotto, E. D., Yuritsyn, N. S. & Schmelzer, J. W. P. Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J. Non-Cryst. Solids 352, 2681–2714 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zaragoza, A. et al. Competition between ices Ih and Ic in homogeneous water freezing. J. Chem. Phys. 143, 134504 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Niu, H., Bonati, L., Piaggi, P. M. & Parrinello, M. Ab initio phase diagram and nucleation of gallium. Nat. Commun. 11, 2654 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, J., Niu, H., Hu, J., Chen, M. & Stixrude, L. Melting of MgSiO3 determined by machine learning potentials. Phys. Rev. B 107, 064103 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Niu, H., Piaggi, P. M., Invernizzi, M. & Parrinello, M. Molecular dynamics simulations of liquid silica crystallization. Proc. Natl Acad. Sci. 115, 5348–5352 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potapov, O. V., Fokin, V. M. & Filipovich, V. N. Nucleation and crystal growth in water containing soda–lime–silica glasses. J. Non-Cryst. Solids 247, 74–78 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turnbull, D. Correlation of liquid-solid interfacial energies calculated from supercooling of small droplets. J. Chem. Phys. 18, 769–769 (1950).

    Article 
    CAS 

    Google Scholar
     

  • Fokin, V. M. & Zanotto, E. D. Crystal nucleation in silicate glasses: the temperature and size dependence of crystal/liquid surface energy. J. Non-Cryst. Solids 265, 105–112 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Laird, B. B. & Davidchack, R. L. Direct calculation of the crystal−melt interfacial free energy via molecular dynamics computer simulation. J. Phys. Chem. B 109, 17802–17812 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fokin, V. M., Zanotto, E. D. & Schmelzer, J. W. P. Homogeneous nucleation versus glass transition temperature of silicate glasses. J. Non-Cryst. Solids 321, 52–65 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Monteux, J., Andrault, D. & Samuel, H. On the cooling of a deep terrestrial magma ocean. Earth Planet. Sci. Lett. 448, 140–149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Stixrude, L., de Koker, N., Sun, N., Mookherjee, M. & Karki, B. B. Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. Lett. 278, 226–232 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Boukaré, C. E., Ricard, Y. & Fiquet, G. Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: application to the crystallization of Earth’s magma ocean. J. Geophys. Res. Solid Earth 120, 6085–6101 (2015).

    Article 

    Google Scholar
     

  • Nabiei, F. et al. Investigating magma ocean solidification on Earth through laser-heated diamond anvil cell experiments. Geophys. Res. Lett. 48, e2021GL092446 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dowty, E. in Physics of Magmatic Processes (ed. Hargraves, R. B.) Ch. 10, 419–486 (Princeton Univ. Press, 1980).

  • Asahara, Y. et al. Formation of metastable cubic-perovskite in high-pressure phase transformation of Ca(Mg, Fe, Al)Si2O6. Am. Mineral. 90, 457–462 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ito, E., Kubo, A., Katsura, T. & Walter, M. J. Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys. Earth Planet. Inter. 143–144, 397–406 (2004).

    Article 

    Google Scholar
     

  • Fei, H., Faul, U. & Katsura, T. The grain growth kinetics of bridgmanite at the topmost lower mantle. Earth Planet. Sci. Lett. 561, 116820 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yamazaki, D., Yoshino, T., Matsuzaki, T., Katsura, T. & Yoneda, A. Texture of (Mg,Fe)SiO3 perovskite and ferro-periclase aggregate: implications for rheology of the lower mantle. Phys. Earth Planet. Inter. 174, 138–144 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Panero, W. R., Pigott, J. S., Reaman, D. M., Kabbes, J. E. & Liu, Z. Dry (Mg,Fe)SiO3 perovskite in the Earth’s lower mantle. J. Geophys. Res. Solid Earth 120, 894–908 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ghosh, D. B. & Karki, B. B. Transport properties of carbonated silicate melt at high pressure. Sci. Adv. 3, e1701840 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caracas, R., Hirose, K., Nomura, R. & Ballmer, M. D. Melt–crystal density crossover in a deep magma ocean. Earth Planet. Sci. Lett. 516, 202–211 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dragulet, F. & Stixrude, L. Partitioning of iron between (Mg,Fe)SiO3 liquid and bridgmanite. Geophys. Res. Lett. 51, e2023GL107979 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xing, C.-M., Wang, C. Y., Charlier, B. & Namur, O. Ubiquitous dendritic olivine constructs initial crystal framework of mafic magma chamber. Earth Planet. Sci. Lett. 594, 117710 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Deguen, R., Alboussière, T. & Brito, D. On the existence and structure of a mush at the inner core boundary of the Earth. Phys. Earth Planet. Inter. 164, 36–49 (2007).

    Article 

    Google Scholar
     

  • Bergman, M. I. Estimates of the Earth’s inner core grain size. Geophys. Res. Lett. 25, 1593–1596 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Tsujino, N. et al. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments. Sci. Adv. 8, eabm1821 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talavera-Soza, S., Cobden, L., Faul, U. H. & Deuss, A. Global 3D model of mantle attenuation using seismic normal modes. Nature 637, 1131–1135 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzberg, C. & Zhang, J. Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J. Geophys. Res. Solid Earth 101, 8271–8295 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S., Hu, J., Sun, X., Deng, J. & Niu, H. Structural heterogeneity of MgSiO3 liquid and its connection with dynamical properties. Phys. Rev. Lett. 134, 204101 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piaggi, P. M. & Parrinello, M. Multithermal-multibaric molecular simulations from a variational principle. Phys. Rev. Lett. 122, 050601 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Branduardi, D., Bussi, G. & Parrinello, M. Metadynamics with adaptive Gaussians. J. Chem. Theory Comput. 8, 2247–2254 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Davis, M. J., Ihinger, P. D. & Lasaga, A. C. Influence of water on nucleation kinetics in silicate melt. J. Non-Cryst. Solids 219, 62–69 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Fenn, P. M. The nucleation and growth of alkali feldspars from hydrous melts. Can. Mineral. 15, 135–161 (1977).


    Google Scholar
     

  • Hammer, J. E. Crystal nucleation in hydrous rhyolite: experimental data applied to classical theory. Am. Mineral. 89, 1673–1679 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Arzilli, F. et al. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments. Contrib. Mineral. Petrol. 170, 55 (2015).

    Article 

    Google Scholar
     

  • Fletcher, N. H. Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–576 (1958).

    Article 
    CAS 

    Google Scholar
     

  • Solomatov, V. S. Batch crystallization under continuous cooling: analytical solution for diffusion limited crystal growth. J. Cryst. Growth 148, 421–431 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Alfè, D. Melting curve of MgO from first-principles simulations. Phys. Rev. Lett. 94, 235701 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Castro, R. H. R., Tôrres, R. B., Pereira, G. J. & Gouvêa, D. Interface energy measurement of MgO and ZnO: understanding the thermodynamic stability of nanoparticles. Chem. Mater. 22, 2502–2509 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Christensen, U. R. Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152, 565–590 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bower, D. J., Sanan, P. & Wolf, A. S. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets. Phys. Earth Planet. Inter. 274, 49–62 (2018).

    Article 

    Google Scholar
     

  • Stixrude, L., Scipioni, R. & Desjarlais, M. P. A silicate dynamo in the early Earth. Nat. Commun. 11, 935 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziegler, L. B. & Stegman, D. R. Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochem. Geophys. Geosyst. 14, 4735–4742 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116, 7078–7116 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espinosa, J. R., Sanz, E., Valeriani, C. & Vega, C. Homogeneous ice nucleation evaluated for several water models. J. Chem. Phys. 141, 18C529 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurz, W., Fisher, D. J. & Trivedi, R. Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000. Int. Mater. Rev. 64, 311–354 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Silicon and magnesium diffusion in a single crystal of MgSiO3 perovskite. J. Geophys. Res. Solid Earth 116, JB008444 (2011).

    Article 

    Google Scholar
     

  • Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments