Monday, December 23, 2024
No menu items!
HomeNatureThe Massalia asteroid family as the origin of ordinary L chondrites

The Massalia asteroid family as the origin of ordinary L chondrites

  • Heck, P. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017).

    Article 

    Google Scholar
     

  • Schmieder, M. & Kring, D. A. Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91–141 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenkmann, T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 56, 1024–1070 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schmitz, B. et al. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 5, eaax4184 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swindle, T. D., Kring, D. A. & Weirich, J. R. 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. Geol. Soc. Lond. Spec. Publ. 378, 333–347 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sykes, M. V. Zodiacal dust bands: Their relation to asteroid families. Icarus 85, 267–289 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Walton, C. R. et al. In-situ phosphate U-Pb ages of the L chondrites. Geochim. Cosmochim. Acta 359, 191–204 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heymann, D. On the origin of hypersthene chondrites: ages and shock effects of black chondrites. Icarus 6, 189–221 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marti, K. & Graf, T. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rubin, A. E. Metallic copper in ordinary chondrites. Meteoritics 29, 93–98 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bischoff, A., Schleiting, M. & Patzek, M. Shock stage distribution of 2280 ordinary chondrites—can bulk chondrites with a shock stage of S6 exist as individual rocks? Meteorit. Planet. Sci. 54, 2189–2202 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Korochantseva, E. V. et al. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating. Meteorit. Planet. Sci. 42, 113–130 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haack, H., Farinella, P., Scott, E. R. D. & Keil, K. Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–191 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88–90 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Terfelt, F. & Schmitz, B. Asteroid break-ups and meteorite delivery to Earth the past 500 million years. Proc. Natl Acad. Sci. 118, e2020977118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Bottke, W. F. et al.) 297–321 (Univ. Arizona Press, 2015).

  • Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature https://doi.org/10.1038/s41586-024-08006-7 (2024).

  • Pieters, C. M. and Hiroi, T. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility. In 35th Lunar and Planetary Science Conference, abstract no. 1720 (2004).

  • Milliken, R. E., Hiroi, T. & Patterson, W., The NASA Reflectance Experiment Laboratory (RELAB) Facility: Past, Present, and Future. In 47th Lunar and Planetary Science Conference, LPI Contribution No. 1903, p. 2058 (2016).

  • Brunetto, R. et al. Modeling asteroid surfaces from observations and irradiation experiments: The case of 832 Karin. Icarus 184, 327–337 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the moon. Icarus 137, 235–246 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Binzel, R. P. et al. Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41–76 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gaffey, M. J. & Fieber-Beyer, S. K., Is the (20) Massalia family the source of the L-chondrites? In 50th Lunar and Planetary Science Conference, no. 2132, id. 1441 (2019).

  • Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the solar system dust bands. Astrophys. J. 591, 486–497 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Vokrouhlický, D., Brož, M., Bottke, W. F., Nesvorný, D. & Morbidelli, A. Yarkovsky/YORP chronology of asteroid families. Icarus 182, 118–142 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Spoto, F., Milani, A. & Knežević, Z. Asteroid family ages. Icarus 257, 275–289 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, C. A. & Binzel, R. P. Identifying meteorite source regions through near-Earth object spectroscopy. Icarus 205, 419–429 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010).

    Article 

    Google Scholar
     

  • Dunn, T. L., Burbine, T. H., Bottke, W. F.Jr & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273–282 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ali-Lagoa, V., Müller, T. G., Usui, F. & Hasegawa, S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron Astrophys. 612, A85 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Alí-Lagoa, V. et al. Thermal properties of large main-belt asteroids observed by Herschel PACS. Astron. Astrophys. 638, A84 (2020).

    Article 

    Google Scholar
     

  • Herald, D. et al. Small Bodies Occultations Bundle V3.0. NASA Planetary Data System https://doi.org/10.26033/ap0g-wf63 (2019).

  • Mainzer, A. K. et al. NEOWISE Diameters and Albedos V2.0. NASA Planetary Data System https://doi.org/10.26033/18S3-2Z54 (2019).

  • Gail, H.-P. & Trieloff, M. Thermal history modelling of the L chondrite parent body. Astron. Astrophys. 628, A77 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liao, S., Huyskens, M. H., Yin, Q.-Z. & Schmitz, B. Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone. Earth Planet Sci. Lett. 547, 116442 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 829–851 (Univ. Arizona Press, 2006).

  • Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. Geochemical evidence for a comet shower in the Late Eocene. Science 280, 1250–1253 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schenk, P. et al. The geologically recent giant impact basins at Vesta’s South Pole. Science 336, 694–697 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Article 
    ADS 

    Google Scholar
     

  • LSST Science Collaboration. LSST Science Book, Version 2.0. Preprint at arxiv.org/abs/0912.0201 (2009).

  • Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).

    Article 

    Google Scholar
     

  • Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: Fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jenniskens, P. et al. The Creston, California, meteorite fall and the origin of L chondrites. Meteorit. Planet. Sci. 54, 699–720 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Rayner, J. T. et al. SpeX: a medium-resolution 0.8-5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 115, 362–382 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Rivkin, A. S., Binzel, R. P. & Bus, S. J. Constraining near-Earth object albedos using near-infrared spectroscopy. Icarus 175, 175–180 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: the observations. Icarus 158, 106–145 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burbine, T. H. & Binzel, R. P. Small Main-Belt Asteroid Spectroscopic Survey in the near-infrared. Icarus 159, 468–499 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGraw, A. M., Reddy, V. & Sanchez, J. A. Spectroscopic characterization of the Gefion Asteroid Family: implications for L-chondrite link. Mon. Not. R. Astron. Soc. 515, 5211–5218 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Britt, D. T. & Pieters, C. M. Black ordinary chondrites: an analysis of abundance and fall frequency. Meteoritics 26, 279–285 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reddy, V. et al. Chelyabinsk meteorite explains unusual spectral properties of Baptistina asteroid family. Icarus 237, 116–130 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kohout, T. et al. Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite – Insight into shock-induced changes in asteroid regoliths. Icarus 228, 78–85 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kohout, T. et al. Experimental constraints on the ordinary chondrite shock darkening caused by asteroid collisions. Astron. Astrophys. 639, A146 (2020).

    Article 
    CAS 

    Google Scholar
     

  • DeMeo, F. E. et al. Connecting asteroids and meteorites with visible and near-infrared spectroscopy. Icarus 380, 114971 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. & Reed, K. L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. 91, 11641–11653 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Vernazza, P. et al. Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus 207, 800–809 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Binzel, R. P. et al. Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis. Icarus 200, 480–485 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dunn, T. L., McCoy, T. J., Sunshine, J. M. & McSween, H. Y. A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus 208, 789–797 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Nesvorný, D. et al. NEOMOD: A new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).

  • Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323–325 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. Asteroidal source of L chondrite meteorites. Icarus 200, 698–701 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Quinn, T. R., Tremaine, S. & Duncan, M. A Three Million Year Integration of the Earth’s Orbit. Astron. J. 101, 2287 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Å idlichovský, M. & Nesvorný, D. Frequency modified Fourier transform and its application to asteroids. Celest. Mech. Dyn. Astron. 65, 137–148 (1996).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).

    ADS 

    Google Scholar
     

  • Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holsapple, K. A. Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus 187, 500–509 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Novaković, B. & Radović, V., Asteroid Families Portal. http://asteroids.matf.bg.ac.rs/fam/ (2019).

  • Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).

  • RELATED ARTICLES

    Most Popular

    Recent Comments