Heck, P. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017).
Schmieder, M. & Kring, D. A. Earthâs impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91â141 (2020).
Kenkmann, T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 56, 1024â1070 (2021).
Schmitz, B. et al. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 5, eaax4184 (2019).
Swindle, T. D., Kring, D. A. & Weirich, J. R. 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. Geol. Soc. Lond. Spec. Publ. 378, 333â347 (2014).
Sykes, M. V. Zodiacal dust bands: Their relation to asteroid families. Icarus 85, 267â289 (1990).
Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461â484 (1997).
Walton, C. R. et al. In-situ phosphate U-Pb ages of the L chondrites. Geochim. Cosmochim. Acta 359, 191â204 (2023).
Heymann, D. On the origin of hypersthene chondrites: ages and shock effects of black chondrites. Icarus 6, 189â221 (1967).
Marti, K. & Graf, T. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221â243 (1992).
Rubin, A. E. Metallic copper in ordinary chondrites. Meteoritics 29, 93â98 (1994).
Bischoff, A., Schleiting, M. & Patzek, M. Shock stage distribution of 2280 ordinary chondritesâcan bulk chondrites with a shock stage of S6 exist as individual rocks? Meteorit. Planet. Sci. 54, 2189â2202 (2019).
Korochantseva, E. V. et al. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating. Meteorit. Planet. Sci. 42, 113â130 (2007).
Haack, H., Farinella, P., Scott, E. R. D. & Keil, K. Meteoritic, asteroidal, and theoretical constraints on the 500âMa disruption of the L chondrite parent body. Icarus 119, 182â191 (1996).
Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88â90 (1997).
Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1â15 (2001).
Terfelt, F. & Schmitz, B. Asteroid break-ups and meteorite delivery to Earth the past 500 million years. Proc. Natl Acad. Sci. 118, e2020977118 (2021).
Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377â406 (2020).
Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Bottke, W. F. et al.) 297â321 (Univ. Arizona Press, 2015).
Gaffey, M. J. et al. Mineralogical variations within the S-type asteroid class. Icarus 106, 573â602 (1993).
Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113â1116 (2011).
Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).
Brož, M. et al. Young asteroid families as the primary source of meteorites. Nature https://doi.org/10.1038/s41586-024-08006-7 (2024).
Pieters, C. M. and Hiroi, T. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility. In 35th Lunar and Planetary Science Conference, abstract no. 1720 (2004).
Milliken, R. E., Hiroi, T. & Patterson, W., The NASA Reflectance Experiment Laboratory (RELAB) Facility: Past, Present, and Future. In 47th Lunar and Planetary Science Conference, LPI Contribution No. 1903, p. 2058 (2016).
Brunetto, R. et al. Modeling asteroid surfaces from observations and irradiation experiments: The case of 832 Karin. Icarus 184, 327â337 (2006).
Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the moon. Icarus 137, 235â246 (1999).
Binzel, R. P. et al. Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41â76 (2019).
Gaffey, M. J. & Fieber-Beyer, S. K., Is the (20) Massalia family the source of the L-chondrites? In 50th Lunar and Planetary Science Conference, no. 2132, id. 1441 (2019).
Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181â207 (2018).
Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the solar system dust bands. Astrophys. J. 591, 486â497 (2003).
Vokrouhlický, D., Brož, M., Bottke, W. F., Nesvorný, D. & Morbidelli, A. Yarkovsky/YORP chronology of asteroid families. Icarus 182, 118â142 (2006).
Spoto, F., Milani, A. & KneževiÄ, Z. Asteroid family ages. Icarus 257, 275â289 (2015).
Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022).
Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591â598 (1962).
Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858â860 (2008).
Thomas, C. A. & Binzel, R. P. Identifying meteorite source regions through near-Earth object spectroscopy. Icarus 205, 419â429 (2010).
de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010).
Dunn, T. L., Burbine, T. H., Bottke, W. F.Jr & Clark, J. P. Mineralogies and source regions of near-Earth asteroids. Icarus 222, 273â282 (2013).
Ali-Lagoa, V., Müller, T. G., Usui, F. & Hasegawa, S. The AKARI IRC asteroid flux catalogue: updated diameters and albedos. Astron Astrophys. 612, A85 (2018).
AlÃ-Lagoa, V. et al. Thermal properties of large main-belt asteroids observed by Herschel PACS. Astron. Astrophys. 638, A84 (2020).
Herald, D. et al. Small Bodies Occultations Bundle V3.0. NASA Planetary Data System https://doi.org/10.26033/ap0g-wf63 (2019).
Mainzer, A. K. et al. NEOWISE Diameters and Albedos V2.0. NASA Planetary Data System https://doi.org/10.26033/18S3-2Z54 (2019).
Gail, H.-P. & Trieloff, M. Thermal history modelling of the L chondrite parent body. Astron. Astrophys. 628, A77 (2019).
Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550â553 (1993).
Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107â144 (2006).
Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102â2105 (2022).
Liao, S., Huyskens, M. H., Yin, Q.-Z. & Schmitz, B. Absolute dating of the L-chondrite parent body breakup with high-precision UâPb zircon geochronology from Ordovician limestone. Earth Planet Sci. Lett. 547, 116442 (2020).
Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 829â851 (Univ. Arizona Press, 2006).
Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. Geochemical evidence for a comet shower in the Late Eocene. Science 280, 1250â1253 (1998).
Schenk, P. et al. The geologically recent giant impact basins at Vestaâs South Pole. Science 336, 694â697 (2012).
IveziÄ, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).
LSST Science Collaboration. LSST Science Book, Version 2.0. Preprint at arxiv.org/abs/0912.0201 (2009).
Colas, F. et al. FRIPON: a worldwide network to track incoming meteoroids. Astron. Astrophys. 644, A53 (2020).
Spurný, P., BoroviÄka, J. & Shrbený, L. The ŽÄár nad Sázavou meteorite fall: Fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376â401 (2020).
Jenniskens, P. et al. The Creston, California, meteorite fall and the origin of L chondrites. Meteorit. Planet. Sci. 54, 699â720 (2019).
Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816â836 (2010).
Rayner, J. T. et al. SpeX: a medium-resolution 0.8-5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 115, 362â382 (2003).
Rivkin, A. S., Binzel, R. P. & Bus, S. J. Constraining near-Earth object albedos using near-infrared spectroscopy. Icarus 175, 175â180 (2005).
Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: the observations. Icarus 158, 106â145 (2002).
Burbine, T. H. & Binzel, R. P. Small Main-Belt Asteroid Spectroscopic Survey in the near-infrared. Icarus 159, 468â499 (2002).
McGraw, A. M., Reddy, V. & Sanchez, J. A. Spectroscopic characterization of the Gefion Asteroid Family: implications for L-chondrite link. Mon. Not. R. Astron. Soc. 515, 5211â5218 (2022).
Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115â149 (1993).
Britt, D. T. & Pieters, C. M. Black ordinary chondrites: an analysis of abundance and fall frequency. Meteoritics 26, 279â285 (1991).
Reddy, V. et al. Chelyabinsk meteorite explains unusual spectral properties of Baptistina asteroid family. Icarus 237, 116â130 (2014).
Kohout, T. et al. Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite – Insight into shock-induced changes in asteroid regoliths. Icarus 228, 78â85 (2014).
Kohout, T. et al. Experimental constraints on the ordinary chondrite shock darkening caused by asteroid collisions. Astron. Astrophys. 639, A146 (2020).
DeMeo, F. E. et al. Connecting asteroids and meteorites with visible and near-infrared spectroscopy. Icarus 380, 114971 (2022).
Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. & Reed, K. L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. 91, 11641â11653 (1986).
Vernazza, P. et al. Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus 207, 800â809 (2010).
Binzel, R. P. et al. Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis. Icarus 200, 480â485 (2009).
Dunn, T. L., McCoy, T. J., Sunshine, J. M. & McSween, H. Y. A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus 208, 789â797 (2010).
Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558â573 (2009).
Nesvorný, D. et al. NEOMOD: A new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).
Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323â325 (2004).
Nesvorný, D., Vokrouhlický, D., Morbidelli, A. & Bottke, W. F. Asteroidal source of L chondrite meteorites. Icarus 200, 698â701 (2009).
Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18â36 (1994).
Quinn, T. R., Tremaine, S. & Duncan, M. A Three Million Year Integration of the Earthâs Orbit. Astron. J. 101, 2287 (1991).
Å idlichovský, M. & Nesvorný, D. Frequency modified Fourier transform and its application to asteroids. Celest. Mech. Dyn. Astron. 65, 137â148 (1996).
Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049â3060 (1999).
Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093â1100 (1998).
Äapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526â536 (2004).
Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378â387 (1998).
Holsapple, K. A. Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus 187, 500â509 (2007).
Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716â2727 (2011).
NovakoviÄ, B. & RadoviÄ, V., Asteroid Families Portal. http://asteroids.matf.bg.ac.rs/fam/ (2019).
Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701â724 (Univ. Arizona Press, 2015).