Wednesday, November 5, 2025
No menu items!
HomeNatureThe importance of past rifting in large igneous province development

The importance of past rifting in large igneous province development

  • Ebinger, C. J. & Sleep, N. H. Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395, 788–791 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Lin, S.-C., Kuo, B.-Y., Chiao, L.-Y. & van Keken, P. E. Thermal plume models and melt generation in East Africa: a dynamic modeling approach. Earth Planet. Sci. Lett. 237, 175–192 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Steinberger, B., Bredow, E., Lebedev, S., Schaeffer, A. & Torsvik, T. H. Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume. Nat. Geosci. 12, 61–68 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • George, R., Rogers, N. & Kelley, S. Earliest magmatism in Ethiopia: evidence for two mantle plumes in one flood basalt province. Geology 26, 923–926 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Mackenzie, G. D., Thybo, H. & Maguire, P. K. H. Crustal velocity structure across the Main Ethiopian Rift: results from 2-dimensional wide-angle seismic modelling. Geophys. J. Int. 162, 994–1006 (2005).

    ADS 

    Google Scholar
     

  • Dugda, M. T., Nyblade, A. A. & Julia, J. Thin lithosphere beneath the Ethiopian Plateau revealed by a joint inversion of Rayleigh wave group velocities and receiver functions. J. Geophys. Res. Solid Earth 112, B08305 (2007).

  • Coffin, M. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    ADS 

    Google Scholar
     

  • Schmeling, H. & Wallner, H. Magmatic lithospheric heating and weakening during continental rifting: a simple scaling law, a 2-D thermomechanical rifting model and the East African Rift System. Geochem. Geophys. Geosyst. 13, Q08001 (2012).

  • Armitage, J. J., Collier, J. S. & Minshull, T. A. The importance of rift history for volcanic margin formation. Nature 465, 913–917 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Naliboff, J. & Buiter, S. J. Rift reactivation and migration during multiphase extension. Earth Planet. Sci. Lett. 421, 58–67 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Pik, R., Marty, B., Carignan, J. & Lavé, J. Stability of the Upper Nile drainage network (Ethiopia) deduced from (U–Th)/He thermochronometry: implications for uplift and erosion of the Afar plume dome. Earth Planet. Sci. Lett. 215, 73–88 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Hofmann, C. et al. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389, 838–841 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Alemayehu, S. et al. Structure of the crust-uppermost mantle beneath the Ethiopian volcanic province using ambient seismic noise and teleseismic P wave coda autocorrelation. Tectonophysics 869, 230092 (2023).


    Google Scholar
     

  • Boyce, A. et al. Mantle wavespeed and discontinuity structure below East Africa: implications for Cenozoic hotspot tectonism and the development of the Turkana Depression. Geochem. Geophys. Geosyst. 24, e2022GC010775 (2023).

    ADS 

    Google Scholar
     

  • Kounoudis, R. et al. Body-wave tomographic imaging of the Turkana Depression: implications for rift development and plume–lithosphere interactions. Geochem. Geophys. Geosyst. 22, e2021GC009782 (2021).

    ADS 

    Google Scholar
     

  • Steiner, R. A. et al. Messengers from the magma chambers: petrostratigraphic analysis of plagioclase-rich flood basalt lavas in Turkana, Kenya. J. Petrol. 65, egae044 (2024).

    CAS 

    Google Scholar
     

  • Bosworth, W. Mesozoic and early Tertiary rift tectonics in East Africa. Tectonophysics 209, 115–137 (1992).

    ADS 

    Google Scholar
     

  • Ogden, C. et al. The development of multiple phases of superposed rifting in the Turkana Depression, East Africa: evidence from receiver functions. Earth Planet. Sci. Lett. 609, 118088 (2023).

    CAS 

    Google Scholar
     

  • Rooney, T. O. The Cenozoic magmatism of East-Africa: Part I–flood basalts and pulsed magmatism. Lithos 286, 264–301 (2017).

    ADS 

    Google Scholar
     

  • Morley, C. K. et al. Geoscience of Rift Systems—Evolution of East Africa: AAPG Studies in Geology No. 44 Ch. 4 (The American Association of Petroleum Geologists, 1999).

  • Musila, M. et al. Active deformation constraints on the Nubia–Somalia plate boundary through heterogenous lithosphere of the Turkana Depression. Geochem. Geophys. Geosyst. 24, e2023GC010982 (2023).

    ADS 

    Google Scholar
     

  • Cancel Vazquez, S. M. et al. Basaltic pulses and lithospheric thinning—Plio-Pleistocene magmatism and rifting in the Turkana Depression (East African Rift System). J. Geophys. Res. Solid Earth 129, e2024JB029166 (2024).

    ADS 

    Google Scholar
     

  • Dugda, M. et al. Crustal structure in Ethiopia and Kenya from receiver function analysis. J. Geophys. Res. 110, B01303 (2005).

  • Pérez-Gussinyé, M. et al. Towards a process-based understanding of rifted continental margins. Nat. Rev. Earth Environ. 4, 166–184 (2023).

    ADS 

    Google Scholar
     

  • Shuck, B. D., Van Avendonk, H. J. & Bécel, A. The role of mantle melts in the transition from rifting to seafloor spreading offshore eastern North America. Earth Planet. Sci. Lett. 525, 115756 (2019).

    CAS 

    Google Scholar
     

  • Julià, J., Ammon, C. J. & Nyblade, A. A. Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities. Geophys. J. Int. 162, 555–569 (2005).

    ADS 

    Google Scholar
     

  • Kounoudis, R. et al. The development of rifting and magmatism in the multiply-rifted Turkana Depression, East Africa: evidence from surface wave analysis of crustal and uppermost mantle structure. Earth Planet. Sci. Lett. 621, 118386 (2023).

  • Ma, Z., Masters, G., Laske, G. & Pasyanos, M. A comprehensive dispersion model of surface wave phase and group velocity for the globe. Geophys. J. Int. 199, 113–135 (2014).

    ADS 

    Google Scholar
     

  • Richards, F. D., Hoggard, M. J., White, N. & Ghelichkhan, S. Quantifying the relationship between short-wavelength dynamic topography and thermomechanical structure of the upper mantle using calibrated parameterization of anelasticity. J. Geophys. Res. Solid Earth 125, e2019JB019062 (2020).

    ADS 

    Google Scholar
     

  • Goes, S., Hasterok, D., Schutt, D. L. & Klöcking, M. Continental lithospheric temperatures: a review. Phys. Earth Planet. Inter. 306, 106509 (2020).


    Google Scholar
     

  • McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Morley, C. Interaction of deep and shallow processes in the evolution of the Kenya Rift. Tectonophysics 236, 81–91 (1994).

    ADS 

    Google Scholar
     

  • Schofield, N. et al. Linking surface and subsurface volcanic stratigraphy in the Turkana Depression of the East African Rift system. J. Geol. Soc. 178, jgs2020–110 (2021).


    Google Scholar
     

  • Morley, C. K. et al. Geoscience of Rift Systems—Evolution of East Africa: AAPG Studies in Geology No. 44 Ch. 2 (The American Association of Petroleum Geologists, 1999).

  • Muirhead, J. D., Scholz, C. A. & Rooney, T. O. Transition to magma-driven rifting in the South Turkana Basin, Kenya: Part 1. J. Geol. Soc. 179, jgs2021–159 (2022).


    Google Scholar
     

  • Mechie, J. et al. Crustal structure beneath the Kenya Rift from axial profile data. Tectonophysics 236, 179–200 (1994).

    ADS 

    Google Scholar
     

  • Lavayssière, A. et al. Imaging lithospheric discontinuities beneath the Northern East African Rift using S-to-P receiver functions. Geochem. Geophys. Geosyst. 19, 4048–4062 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebinger, C., Reiss, M. C., Bastow, I. & Karanja, M. M. Shallow sources of upper mantle seismic anisotropy in East Africa. Earth Planet. Sci. Lett. 625, 118488 (2024).

    CAS 

    Google Scholar
     

  • Furman, T., Kaleta, K. M., Bryce, J. G. & Hanan, B. B. Tertiary mafic lavas of Turkana, Kenya: constraints on East African plume structure and the occurrence of high-μ volcanism in Africa. J. Petrol. 47, 1221–1244 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Rooney, T. O., Herzberg, C. & Bastow, I. D. Elevated mantle temperature beneath East Africa. Geology 40, 27–30 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

  • Pusok, A., Li, Y., Davis, T., May, D. & Katz, R. Inefficient melt transport across a weakened lithosphere led to anomalous rift architecture in the Turkana Depression. Geophys. Res. Lett. 52, e2025GL115228 (2025).

    ADS 

    Google Scholar
     

  • Bollinger, A. R., Rooney, T. O., Brown, E. L. & Ramos, F. C. A HIMU-like endmember hiding in the Turkana Depression continental lithospheric mantle. Geochem. Geophys. Geosyst. 26, e2024GC012086 (2025).

    ADS 
    CAS 

    Google Scholar
     

  • Kaeser, B., Kalt, A. & Pettke, T. Evolution of the lithospheric mantle beneath the Marsabit volcanic field (northern Kenya): constraints from textural, PT and geochemical studies on xenoliths. J. Petrol. 47, 2149–2184 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Kaczmarek, M.-A. & Reddy, S. M. Mantle deformation during rifting: constraints from quantitative microstructural analysis of olivine from the East African Rift (Marsabit, Kenya). Tectonophysics 608, 1122–1137 (2013).

    ADS 

    Google Scholar
     

  • Rooney, T. O., Nelson, W. R., Dosso, L., Furman, T. & Hanan, B. The role of continental lithosphere metasomes in the production of HIMU-like magmatism on the northeast African and Arabian plates. Geology 42, 419–422 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Bialas, R. W., Buck, W. R. & Qin, R. How much magma is required to rift a continent? Earth Planet. Sci. Lett. 292, 68–78 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Altoe, I., Eeken, T., Goes, S., Foster, A. & Darbyshire, F. Thermo-compositional structure of the north-eastern Canadian Shield from Rayleigh wave dispersion analysis as a record of its tectonic history. Earth Planet. Sci. Lett. 547, 116465 (2020).

    CAS 

    Google Scholar
     

  • Tsikalas, F., Faleide, J. I. & Kusznir, N. J. Along-strike variations in rifted margin crustal architecture and lithosphere thinning between northern Vøring and Lofoten margin segments off mid-Norway. Tectonophysics 458, 68–81 (2008).

    ADS 

    Google Scholar
     

  • Sullivan, G. et al. Kinematics of rift linkage between the Eastern and Ethiopian rifts in the Turkana Depression, Africa. Basin Res. 36, e12900 (2024).


    Google Scholar
     

  • Keranen, K. Exploring extensional tectonics beyond the Ethiopian Rift. FDSN https://www.fdsn.org/networks/detail/YY_2013/ (2013).

  • Bastow, I. D. Turkana Rift Arrays to Investigate Lithospheric Strains (TRAILS)—UK component. FDSN https://doi.org/10.7914/SN/6R_2019 (2019).

  • Ebinger, C. J. Crust and mantle structure and the expression of extension in the Turkana Depression of Kenya and Ethiopia. FDSN https://doi.org/10.7914/SN/Y1_2018 (2018).

  • Ligorrìa, J. & Ammon, C. Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89, 1395–1400 (1999).


    Google Scholar
     

  • Gurrola, H. & Minster, J. B. Thickness estimates of the upper-mantle transition zone from bootstrapped velocity spectrum stacks of receiver functions. Geophys. J. Int. 133, 31–43 (1998).

    ADS 

    Google Scholar
     

  • Julia, J., Ammon, C., Herrmann, R. & Correig, A. M. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143, 99–112 (2000).

    ADS 

    Google Scholar
     

  • Hammond, J. O. Constraining melt geometries beneath the Afar Depression, Ethiopia from teleseismic receiver functions: the anisotropic Hκ stacking technique. Geochem. Geophys. Geosyst. 15, 1316–1332 (2014).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Marignier, A., Eakin, C. M., Hejrani, B., Agrawal, S. & Hassan, R. Sediment thickness across Australia from passive seismic methods. Geophys. J. Int. 237, 849–861 (2024).

    ADS 

    Google Scholar
     

  • Ammon, C. J., Randall, G. E. & Zandt, G. On the nonuniqueness of receiver function inversions. J. Geophys. Res. 95, 15303–15318 (1990).

    ADS 

    Google Scholar
     

  • Herrmann, R. B. Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013).


    Google Scholar
     

  • Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from travel-times. Geophys. J. Int. 122, 108–124 (1995).

    ADS 

    Google Scholar
     

  • Nemocón, A. M., Julià, J. & Garcia, X. Lithospheric structure of the western Borborema Province from receiver functions and surface-wave dispersion: implications for basin inversion. Tectonophysics 816, 229024 (2021).


    Google Scholar
     

  • Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Cobden, L., Goes, S., Cammarano, F. & Connolly, J. A. D. Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophys. J. Int. 175, 627–648 (2008).

    ADS 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals-II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Styles, E., Goes, S., van Keken, P. E., Ritsema, J. & Smith, H. Synthetic images of dynamically predicted plumes and comparison with a global tomographic model. Earth Planet. Sci. Lett. 311, 351–363 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Goes, S., Govers, R. & Vacher, P. Shallow mantle temperatures under Europe from P and S wave tomography. J. Geophys. Res. 105, 11153–11169 (2000).

    ADS 

    Google Scholar
     

  • Fullea, J., Lebedev, S., Martinec, Z. & Celli, N. L. WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophys. J. Int. 226, 146–191 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Eaton, D. W. et al. The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons. Lithos 109, 1–22 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • GEOFON Seismic Network. GEOFON Data Centre https://doi.org/10.14470/TR560404 (1993).

  • Quinteros, J. et al. The GEOFON program in 2020. Seismol. Res. Lett. 92, 1610–1622 (2021).


    Google Scholar
     

  • Helffrich, G., Wookey, J. & Bastow, I. D. The Seismic Analysis Code: A Primer and User’s Guide (Cambridge Univ. Press, 2013).

  • Wessel, P. et al. The generic mapping tools version 6. Geochem. Geophys. Geosyst. 20, 5556–5564 (2019).

    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments