Friday, May 30, 2025
No menu items!
HomeNatureThe history and future of resting-state functional magnetic resonance imaging

The history and future of resting-state functional magnetic resonance imaging

  • Golanov, E. V., Yamamoto, S. & Reis, D. J. Spontaneous waves of cerebral blood flow associated with a pattern of electrocortical activity. Am. J. Physiol. 266, R204–R214 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Hudetz, A. G., Roman, R. J. & Harder, D. R. Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure. J. Cereb. Blood Flow Metab. 12, 491–499 (1992). This paper systematically investigates spontaneous oscillations in the cerebral cortex using laser Doppler flow imaging during physiological perturbations in mean arterial pressure.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vern, B. A., Schuette, W. H., Leheta, B., Juel, V. C. & Radulovacki, M. Low-frequency oscillations of cortical oxidative metabolism in waking and sleep. J. Cereb. Blood Flow Metab. 8, 215–226 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berger, H. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 87, 527–570 (1929).

    Article 

    Google Scholar
     

  • Friston, K. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994). This paper provides a conceptual framework of functional and effective connectivity in neuroimaging as approaches for understanding how different brain regions interact and influence one another.

    Article 

    Google Scholar
     

  • Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswal, B., Hudetz, A. G., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo–planar MRI. J. Cereb. Blood Flow Metab. 17, 301–308 (1997). This paper demonstrates using fMRI that hypercapnia reversibly suppresses low-frequency fluctuations and functional connectivity in the motor cortex at rest.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, K., Birn, R. M. & Bandettini, P. A. Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Snyder, A. Z. & Raichle, M. E. A brief history of the resting state: the Washington University perspective. Neuroimage 62, 902–910 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bolt, T., Anderson, M. L. & Uddin, L. Q. Beyond the evoked/intrinsic neural process dichotomy. Netw. Neurosci. https://doi.org/10.1162/NETN_a_00028 (2018). This paper proposes an integrated view of brain activity that emphasizes the continuous interplay between externally driven and internally generated neural dynamics.

  • Thomason, M. E. et al. Cross-hemispheric functional connectivity in the human fetal brain. Sci. Transl. Med. 5, 173ra24 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, H. H. Resting-state connectivity. Proc. Natl Acad. Sci. USA 112, 14115–14116 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007). This study used rsfMRI in anaesthetized monkeys to demonstrate the intrinsic functional architecture of the brain even in the absence of conscious awareness.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M. & Smith, S. M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29, 1359–1367 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, L. Q., Thomas Yeo, B. T. & Spreng, R. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 32, 926–942 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA. 106, 13040–13045 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA. 102, 9673–9678 (2005). This paper demonstrates that the human brain is intrinsically organized into dynamic, anticorrelated functional networks, with the default and task-positive networks displaying opposing activity patterns during rest, suggesting a fundamental principle of brain organization.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C. & Constable, R. T. Brain connectivity related to working memory performance. J. Neurosci. 26, 13338–13343 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527–537 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, S. E., Lenartowicz, A., Hellemann, G. S., Uddin, L. Q. & Bearden, C. E. Variability in cognitive task performance in early adolescence is associated with stronger between-network anticorrelation and future attention problems. Biol. Psychiatry Glob. Open Sci. 3, 948–957 (2023). This study demonstrates that variability in cognitive task performance during early adolescence is linked to stronger anticorrelations between brain networks, and that these brain network interactions predict attention-related issues.

    Article 
    PubMed 

    Google Scholar
     

  • Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosío-Guirado, R. et al. A comprehensive systematic review of fMRI studies on brain connectivity in healthy children and adolescents: current insights and future directions. Dev. Cogn. Neurosci. 69, 101438 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, L. Q. Bring the noise: reconceptualizing spontaneous neural activity. Trends Cogn. Sci. 24, 734–746 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. What have we really learned from functional connectivity in clinical populations? Neuroimage 242, 118466 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Deco, G., Jirsa, V. K. & McIntosh, A. R. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 36, 268–274 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uddin, L. Q., Castellanos, F. X. & Menon, V. Resting state functional brain connectivity in child and adolescent psychiatry: where are we now?. Neuropsychopharmacology 50, 196–200 (2025).

    Article 

    Google Scholar
     

  • Mitra, A., Snyder, A. Z., Blazey, T. & Raichle, M. E. Lag threads organize the brain’s intrinsic activity. Proc. Natl Acad. Sci. USA 112, E2235–E2244 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsui, T., Murakami, T. & Ohki, K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl Acad. Sci. USA 113, 6556–6561 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas, A. et al. Quasi-periodic patterns contribute to functional connectivity in the brain. Neuroimage 191, 193–204 (2019). This study demonstrates that quasi-periodic patterns are a key contributor to functional connectivity in the brain and provide a dynamic mechanism that helps explain the variability and organization of ICNs.

    Article 
    PubMed 

    Google Scholar
     

  • Gu, Y. et al. Brain activity fluctuations propagate as waves traversing the cortical hierarchy. Cereb. Cortex 31, 3986–4005 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raut, R. V. et al. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci. Adv. 7, eabf2709 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolt, T. et al. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat. Neurosci. 25, 1093–1103 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain state manipulation improves prediction of individual traits. Nat. Commun. 9, 2807 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthews, P. M. & Jezzard, P. Functional magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 75, 6–12 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glover, G. H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 22, 133–139 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horovitz, S. G. et al. Decoupling of the brain’s default mode network during deep sleep. Proc. Natl Acad. Sci. USA 106, 11376–11381 (2009). This study demonstrates that functional connectivity within the default mode network is significantly reduced during slow-wave sleep, suggesting that deep sleep disrupts the coordinated activity of this network.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiviniemi, V. et al. Slow vasomotor fluctuation in fMRI of anesthetized child brain. Magn. Reson. Med. 44, 373–378 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltier, S. J. et al. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport 16, 285–288 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Rat brains also have a default mode network. Proc. Natl Acad. Sci. USA 109, 3979–3984 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gozzi, A., Schwarz, A., Crestan, V. & Bifone, A. Drug-anaesthetic interaction in phMRI: the case of the psychotomimetic agent phencyclidine. Magn. Reson. Imaging 26, 999–1006 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H. & Leopold, D. A. Neural basis of global resting-state fMRI activity. Proc. Natl Acad. Sci. USA 107, 10238–10243 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz, K. et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 9, 597–602 (2012).

  • Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitra, A. et al. Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron 98, 297–305.e6 (2018). This paper demonstrates that infra-slow brain activity has distinct spatiotemporal dynamics and is organized in specific layers of the brain.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gozzi, A. & Zerbi, V. Modeling brain dysconnectivity in rodents. Biol. Psychiatry 93, 419–429 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Drew, P. J. et al. Ultra-slow oscillations in fMRI and resting-state connectivity: neuronal and vascular contributions and technical confounds. Neuron 107, 782–804 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, D. M., Smith, S. M. & Beckmann, C. F. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4, 8 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karunakaran, K., Wolfer, M. & Biswal, B. B. in Brain Network Dysfunction in Neuropsychiatric Illness (eds Diwadkar, V. A. & Eickhoff, S. B.) 45–74 (2021).

  • Uddin, L. Q. Mixed signals: on separating brain signal from noise. Trends Cogn. Sci. 21, 405–406 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. E. et al. Resting-state ‘physiological networks’. Neuroimage 213, 116707 (2020). This paper introduces the concept of physiological networks and demonstrates that ICNs reflect patterns of physiological processes, such as heart rate and respiration, that are intertwined with neuronal activity and can influence interpretations of functional connectivity.

    Article 
    PubMed 

    Google Scholar
     

  • Bolt, T. et al. Autonomic physiological coupling of the global fMRI signal. Nat. Neurosci. https://doi.org/10.1038/s41593-025-01945-y (2025).

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Parkes, L., Fulcher, B., Yücel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage 171, 415–436 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ciric, R. et al. Mitigating head motion artifact in functional connectivity MRI. Nat. Protoc. 13, 2801–2826 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Power, J. D., Plitt, M., Laumann, T. O. & Martin, A. Sources and implications of whole-brain fMRI signals in humans. Neuroimage 146, 609–625 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Topography and behavioral relevance of the global signal in the human brain. Sci. Rep. 9, 14286 (2019). This paper demonstrates that the global signal, which is often treated as noise, is spatially organized and linked to behavioural states, suggesting that it carries meaningful information about the brain.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nomi, J. S. et al. Systematic cross-sectional age-associations in global fMRI signal topography. Imaging Neurosci. https://doi.org/10.1162/imag_a_00101 (2024).

  • Saad, Z. S. et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2, 25–32 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173 (2017). This paper discusses the ongoing debate about GSR and reviews the arguments for and against applying GSR.

    Article 
    PubMed 

    Google Scholar
     

  • Yan, C.-G., Wang, X.-D., Zuo, X.-N. & Zang, Y.-F. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14, 339–351 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Nichols, T. E. et al. Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20, 299–303 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dafflon, J. et al. A guided multiverse study of neuroimaging analyses. Nat. Commun. 13, 3758 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumann, T. O. & Snyder, A. Z. Brain activity is not only for thinking. Curr. Opin. Behav. Sci. 40, 130–136 (2021).

    Article 

    Google Scholar
     

  • Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl Acad. Sci. USA 112, 887–892 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W. & Bandettini, P. A. How to interpret resting-state fMRI: ask your participants. J. Neurosci. 41, 1130–1141 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birn, R. M. et al. The influence of physiological noise correction on test–retest reliability of resting-state functional connectivity. Brain Connect. 4, 511–522 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83, 550–558 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Calhoun, V. D., Miller, R., Pearlson, G. & Adalı, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014). This paper introduces addresses time-varying functional connectivity using fMRI and argues that studying these dynamic networks is important for understanding disorders and cognitive processes.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Specht, K. Current challenges in translational and clinical fMRI and future directions. Front. Psychiatry 10, 924 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, L. Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, L. Q. et al. Controversies and progress on standardization of large-scale brain network nomenclature. Netw. Neurosci. 7, 864–905 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanderwal, T., Eilbott, J. & Castellanos, F. X. Movies in the magnet: naturalistic paradigms in developmental functional neuroimaging. Dev. Cogn. Neurosci. 36, 100600 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Finn, E. S. Is it time to put rest to rest? Trends Cogn. Sci. 25, 1021–1032 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makowski, C. et al. Leveraging the Adolescent Brain Cognitive Development Study to improve behavioral prediction from neuroimaging in smaller replication samples. Cereb. Cortex 34, bhae223 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Spisak, T., Bingel, U. & Wager, T. D. Multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E4–E7 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gratton, C., Nelson, S. M. & Gordon, E. M. Brain–behavior correlations: two paths toward reliability. Neuron 110, 1446–1449 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, H. B. et al. Robust brain correlates of cognitive performance in psychosis and its prodrome. Biol. Psychiatry 97, 139–147 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagani, M., Gutierrez-Barragan, D., de Guzman, A. E., Xu, T. & Gozzi, A. Mapping and comparing fMRI connectivity networks across species. Commun. Biol. 6, 1238 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Z., Zhang, Q., Tu, W. & Zhang, N. Gaining insight into the neural basis of resting-state fMRI signal. Neuroimage 250, 118960 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tsai, P.-J. et al. Converging structural and functional evidence for a rat salience network. Biol. Psychiatry 88, 867–878 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. & Yang, Y. Leveraging large-scale brain networks in rats to understand neurological and psychiatric disorders in humans. Neuropsychopharmacology 50, 337–338 (2025).

    Article 

    Google Scholar
     

  • Hadjiabadi, D. H. et al. Brain tumors disrupt the resting-state connectome. Neuroimage Clin. 18, 279–289 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyder, F. & Rothman, D. L. Advances in imaging brain metabolism. Annu. Rev. Biomed. Eng. 19, 485–515 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herman, P., Sanganahalli, B. G., Blumenfeld, H., Rothman, D. L. & Hyder, F. Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI. Proc. Natl Acad. Sci. USA 110, 15115–15120 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wise, R. G., Ide, K., Poulin, M. J. & Tracey, I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21, 1652–1664 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Gati, J. S., Menon, R. S., Ugurbil, K. & Rutt, B. K. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn. Reson. Med. 38, 296–302 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bandettini, P. A. & Wong, E. C. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 10, 197–203 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kannurpatti, S. S. & Biswal, B. B. Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations. Neuroimage 40, 1567–1574 (2008). This paper demonstrates the use of resting-state fluctuations in fMRI signals to detect and scale task-induced BOLD responses, which offers improved detection and interpretation of fMRI BOLD signals during cognitive tasks.

    Article 
    PubMed 

    Google Scholar
     

  • Liu, P. et al. Cerebrovascular reactivity mapping using intermittent breath modulation. Neuroimage 215, 116787 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015). This paper reviews the balance between segregation and integration in brain function through the lens of whole-brain modelling.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathak, A., Roy, D. & Banerjee, A. Whole-brain network models: from physics to bedside. Front. Comput. Neurosci. 16, 866517 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G. & McIntosh, A. R. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 148, 189–205 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Deco, G. & Kringelbach, M. L. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84, 892–905 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A. & Sabuncu, M. R. Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, S.-J. et al. Toward neurosubtypes in autism. Biol. Psychiatry 88, 111–128 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Uddin, L. Q., Dajani, D. R., Voorhies, W., Bednarz, H. & Kana, R. K. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl. Psychiatry 7, e1218 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopal, J., Uddin, L. Q. & Bzdok, D. The end game: respecting major sources of population diversity. Nat. Methods 20, 1122–1128 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schumann, G. et al. Precision medicine and global mental health. Lancet Glob. Health 7, e32 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807.e7 (2017). This paper presents a method for precision functional mapping of individual human brains and highlights how functional brain networks vary significantly across individuals.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yip, S. W. & Konova, A. B. Densely sampled neuroimaging for maximizing clinical insight in psychiatric and addiction disorders. Neuropsychopharmacology 47, 395–396 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Downar, J., Siddiqi, S. H., Mitra, A., Williams, N. & Liston, C. Mechanisms of action of TMS in the treatment of depression. Curr. Top. Behav. Neurosci. 66, 233–277 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Mitra, A., Raichle, M. E., Geoly, A. D., Kratter, I. H. & Williams, N. R. Targeted neurostimulation reverses a spatiotemporal biomarker of treatment-resistant depression. Proc. Natl Acad. Sci. USA 120, e2218958120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqi, S. H. et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat. Hum. Behav. 5, 1707–1716 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cash, R. F. H. & Zalesky, A. Personalized and circuit-based transcranial magnetic stimulation: evidence, controversies, and opportunities. Biol. Psychiatry 95, 510–522 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kong, R. et al. A network correspondence toolbox for quantitative evaluation of novel neuroimaging results. Nat. Commun. 16, 2930 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • West, K. L. et al. BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage 188, 198–207 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lindquist, M. A., Meng Loh, J., Atlas, L. Y. & Wager, T. D. Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage 45, S187–S198 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, W., Rangaprakash, D. & Deshpande, G. Estimated hemodynamic response function parameters obtained from resting state BOLD fMRI signals in subjects with autism spectrum disorder and matched healthy subjects. Data Brief. 19, 1305–1309 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandettini, P. A. Neuronal or hemodynamic? Grappling with the functional MRI signal. Brain Connect. 4, 487–498 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zang, Y., Jiang, T., Lu, Y., He, Y. & Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, L. et al. Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Struct. Funct. 220, 2485–2507 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, L. & Zuo, X.-N. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the human connectome. Neuroscientist 22, 486–505 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B 360, 1001–1013 (2005). This paper used ICA applied to rsfMRI data to demonstrate the presence of multiple spatially independent brain networks without requiring predefined regions of interest.

    Article 

    Google Scholar
     

  • Huettel, S. A. Functional Magnetic Resonance Imaging (Sinauer Associates, 2004). This textbook introduces the physiological basis of fMRI and data analysis methods.

  • Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010). This paper reviews the use of rsfMRI to describe the intrinsic network organization of the brain in healthy individuals and in those with psychiatric and neurological disorders.

    Article 
    PubMed 

    Google Scholar
     

  • van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hulshoff Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Fornito, A., Zalesky, A. & Breakspear, M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Canario, E., Chen, D. & Biswal, B. A review of resting-state fMRI and its use to examine psychiatric disorders. Psychoradiology 1, 42–53 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA 107, 4734–4739 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014). This paper describes a grassroots data sharing effort involving pooling rsfMRI data from multiple sites performing studies of autism spectrum disorder.

    Article 
    PubMed 

    Google Scholar
     

  • HD-200 Consortium. The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012).


    Google Scholar
     

  • Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhamala, E., Yeo, B. T. T. & Holmes, A. J. One size does not fit all: methodological considerations for brain-based predictive modeling in psychiatry. Biol. Psychiatry 93, 717–728 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Milham, M. P. et al. Assessment of the impact of shared brain imaging data on the scientific literature. Nat. Commun. 9, 2818 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, L. Q. Accessible computing platforms democratize neuroimaging data analysis. Nat. Methods 21, 754–755 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renton, A. I. et al. Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging. Nat. Methods 21, 804–808 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayashi, S. et al. brainlife.io: a decentralized and open-source cloud platform to support neuroscience research. Nat. Methods 21, 809–813 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiar, G. et al. Align with the NMIND consortium for better neuroimaging. Nat. Hum. Behav. 7, 1027–1028 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricard, J. A. et al. Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data. Nat. Neurosci. 26, 4–11 (2023). This paper discusses racially exclusionary practices in neuroimaging research and emphasizes the need for more inclusive methodologies to more accurately reflect diverse populations and improving the generalizability of findings in neuroscience.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, S. A. et al. Responsible use of population neuroscience data: Towards standards of accountability and integrity. Dev. Cogn. Neurosci. 72, 101466 (2025).

  • Gao, P. et al. A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping. Sci. Data 9, 286 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, S. C. et al. A multi-site, multi-disorder resting-state magnetic resonance image database. Sci. Data 8, 227 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments