Thursday, August 14, 2025
No menu items!
HomeNatureThe genomic origin of the unique chaetognath body plan

The genomic origin of the unique chaetognath body plan

  • Erwin, D. H. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 147, dev182899 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bone, Q., Kapp, H. & Pierrot-Bults, A. C. The Biology of Chaetognaths (Oxford Univ. Press, 1991).

  • Rieger, V. et al. Immunohistochemical analysis and 3D reconstruction of the cephalic nervous system in Chaetognatha: insights into the evolution of an early bilaterian brain? Invertebr. Biol. 129, 77–104 (2010).


    Google Scholar
     

  • Müller, C. H. G., Rieger, V., Perez, Y. & Harzsch, S. Immunohistochemical and ultrastructural studies on ciliary sense organs of arrow worms (Chaetognatha). Zoomorphology 133, 167–189 (2014).


    Google Scholar
     

  • Marlétaz, F., Peijnenburg, K. T. C. A., Goto, T., Satoh, N. & Rokhsar, D. S. A new spiralian phylogeny places the enigmatic arrow worms among Gnathiferans. Curr. Biol. 29, 312–318.e3 (2019).

    PubMed 

    Google Scholar
     

  • Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. Biol. Sci. 286, 20190831 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín-Zamora, F. M. et al. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 615, 105–110 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Telford, M. J. & Holland, P. W. Evolution of 28S ribosomal DNA in chaetognaths: duplicate genes and molecular phylogeny. J. Mol. Evol. 44, 135–144 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marlétaz, F. et al. Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol. 9, R94 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, T.-Y. S. et al. A giant stem-group chaetognath. Sci. Adv. 10, eadi6678 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinther, J. & Parry, L. A. Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between Gnathiferans and Chaetognaths. Curr. Biol. 29, 881–888.e1 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Satoh, N. Chordate Origins and Evolution (Elsevier, 2016).

  • Budd, G. E. & Telford, M. J. The origin and evolution of arthropods. Nature 457, 812–817 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. A Cambrian crown annelid reconciles phylogenomics and the fossil record. Nature 583, 249–252 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • John, C. C. Memoirs: habits, structure, and development of Spadella cephaloptera. Q. J. Microsc. Sci. 75, 625–696 (1933).


    Google Scholar
     

  • Telford, M. J. & Holland, P. W. The phylogenetic affinities of the chaetognaths: a molecular analysis. Mol. Biol. Evol. 10, 660–676 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Fröbius, A. C. & Funch, P. Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans. Nat. Commun. 8, 9 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papillon, D., Perez, Y., Fasano, L., Le Parco, Y. & Caubit, X. Hox gene survey in the chaetognath Spadella cephaloptera: evolutionary implications. Dev. Genes Evol. 213, 142–148 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Bekkouche, N. & Gąsiorowski, L. Careful amendment of morphological data sets improves phylogenetic frameworks: re-evaluating placement of the fossil Amiskwia sagittiformis. J. Syst. Palaeontol. 20, 1–14 (2022).


    Google Scholar
     

  • Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parey, E. et al. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Y.-J. et al. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat. Commun. 6, 8301 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Simion, P. et al. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. Sci. Adv. 7, eabg4216 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flot, J.-F. et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500, 453–457 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Goto, T. & Yoshida, M. The mating sequence of the benthic arrowworm Spadella schizoptera. Biol. Bull. 169, 328–333 (1985).

    PubMed 

    Google Scholar
     

  • Ren-feng, W. Analysis of chromosome karyotypes in Chaetognath Sagitta crassa. J. Dalian Fish. Univ. 26, 260–263 (2011).


    Google Scholar
     

  • Lewin, T. D. et al. Fusion, fission, and scrambling of the bilaterian genome in Bryozoa. Genome Res. 35, 78–92 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guijarro-Clarke, C., Holland, P. W. H. & Paps, J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat. Ecol. Evol. 4, 519–523 (2020).

    PubMed 

    Google Scholar
     

  • Senaratne, A. P. et al. Formation of the CenH3-deficient holocentromere in Lepidoptera avoids active chromatin. Curr. Biol. 31, 173–181.e7 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hofstatter, P. G. et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185, 3153–3168.e18 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lewin, T. D., Liao, I. J.-Y. & Luo, Y.-J. Annelid comparative genomics and the evolution of massive lineage-specific genome rearrangement in bilaterians. Mol. Biol. Evol. 41, msae172 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, H., Gil, J. Jr & Drinnenberg, I. A. The impact of centromeres on spatial genome architecture. Trends Genet. 35, 565–578 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Houtain, A. et al. Transgenerational chromosome repair in the asexual bdelloid rotifer Adineta vaga. Preprint at bioRxiv https://doi.org/10.1101/2024.01.25.577190 (2024).

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Campos, P. et al. Annelid adult cell type diversity and their pluripotent cellular origins. Nat. Commun. 15, 3194 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piovani, L. et al. Single-cell atlases of two lophotrochozoan larvae highlight their complex evolutionary histories. Sci. Adv. 9, eadg6034 (2023).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat. Genet. 54, 1711–1720 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Rieger, V. et al. Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Dev. Growth Differ. 53, 740–759 (2011).

    PubMed 

    Google Scholar
     

  • Wollesen, T., Rodriguez Monje, S. V., Oel, A. P. & Arendt, D. Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha). J. Exp. Zool. B 340, 342–353 (2023).

    CAS 

    Google Scholar
     

  • Wu, L. et al. Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands. Nat. Commun. 11, 4171 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuda, E., Goto, T., Makabe, K. W. & Satoh, N. Expression of actin genes in the arrow worm Paraspadella gotoi (Chaetognatha). Zoolog. Sci. 14, 953–960 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Carré, D., Djediat, C. & Sardet, C. Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 129, 661–670 (2002).

    PubMed 

    Google Scholar
     

  • Piovani, L. & Marlétaz, F. Single-cell transcriptomics refuels the exploration of spiralian biology. Brief. Funct. Genomics 22, 517–524 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto, T. & Yoshida, M. in Nervous Systems in Invertebrates (ed. Ali, M. A.) 461–481 (Springer, 1987).

  • Ahnelt, P. Chaetognatha. in Biology of the Integument: Invertebrates (eds. Bereiter-Hahn, J., Matoltsy, A. G. & Richards, K. S.) 746–755 (Springer, 1984).

  • Valencia-Montoya, W. A., Pierce, N. E. & Bellono, N. W. Evolution of sensory receptors. Annu. Rev. Cell Dev. Biol. 40, 353–379 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vakirlis, N., Carvunis, A.-R. & McLysaght, A. Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. eLife 9, e53500 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeso, I., Acemel, R. D. & Gómez-Skarmeta, J. L. Cis-regulatory landscapes in development and evolution. Curr. Opin. Genet. Dev. 43, 17–22 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • de Mendoza, A. et al. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat. Ecol. Evol. 3, 1464–1473 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rošić, S. et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat. Genet. 50, 452–459 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, I. V. et al. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 642, 1097–1105 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guynes, K. et al. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol. 25, 204 (2024)

  • Schwaiger, M. et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24, 639–650 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaslaver, A., Baugh, L. R. & Sternberg, P. W. Metazoan operons accelerate recovery from growth-arrested states. Cell 145, 981–992 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douris, V., Telford, M. J. & Averof, M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol. Biol. Evol. 27, 684–693 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Danks, G. B. et al. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol. Biol. Evol. 32, 585–599 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, C. G., Pieszko, T., Nowell, R. W. & Barraclough, T. G. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet. 40, 422–436 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Morel, B., Kozlov, A. M., Stamatakis, A. & Szöllősi, G. J. GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol. Biol. Evol. 37, 2763–2774 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto, T. & Yoshida, M. Growth and reproduction of the benthic arrowworm Paraspadella gotoi (Chaetognatha) in laboratory culture. Invertebr. Reprod. Dev. 32, 201–207 (1997).


    Google Scholar
     

  • Green, M. R. & Sambrook, J. Molecular Cloning. A Laboratory Manual 4th edn (2012).

  • Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman, J. A. et al. Meraculous: de novo genome assembly with short paired-end reads. PLoS ONE 6, e23501 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Klopfenstein, D. V. et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep. 8, 10872 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derelle, R., Philippe, H. & Colbourne, J. K. Broccoli: combining phylogenetic and network analyses for orthology assignment. Mol. Biol. Evol. 37, 3389–3396 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steenwyk, J. L., Buida, T. J. 3rd, Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Barrera-Redondo, J., Lotharukpong, J. S., Drost, H.-G. & Coelho, S. M. Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biol. 24, 54 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Benton M. J., Donoghue P. C. J. & Asher R. J. in The Timetree Of Life (ed. Kumar, S. B. H.) 35–86 (Oxford Univ. Press, 2009).

  • Rota-Stabelli, O., Daley, A. C. & Pisani, D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23, 392–398 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Vannier, J., Steiner, M., Renvoisé, E., Hu, S.-X. & Casanova, J.-P. Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proc. Biol. Sci. 274, 627–633 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2021).

    PubMed 

    Google Scholar
     

  • Matus, D. Q., Halanych, K. M. & Martindale, M. Q. The Hox gene complement of a pelagic chaetognath, Flaccisagitta enflata. Integr. Comp. Biol. 47, 854 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Open2C, et al. Pairtools: from sequencing data to chromosome contacts. PLoS Comput. Biol. 20, e1012164 (2024).

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).

    MathSciNet 

    Google Scholar
     

  • Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marlétaz, F. et al. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. Cell Genomics 3, 100295 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenzel, M. A., Müller, B. & Pettitt, J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-seq data. BMC Bioinformatics 22, 140 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinformatics 18, 205–214 (2016).


    Google Scholar
     

  • García-Castro, H. et al. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hejnol, A. & Martindale, M. Q. Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456, 382–386 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hejnol, A. In situ protocol for embryos and juveniles of Convolutriloba longifissura. Protoc. Exch. https://doi.org/10.1038/nprot.2008.201 (2008).

  • Marlétaz, F. et al. The genomic origin of the unique chaetognath body plan [Data set]. Zenodo https://doi.org/10.5281/zenodo.13936459 (2024).

  • Gąsiorowski, L., Martín-Durán, J. M. & Hejnolin, A. in Hox Modules in Evolution and Development (ed. Ferrier, D. E. K.) 177–194 (CRC, 2023).

  • RELATED ARTICLES

    Most Popular

    Recent Comments