Sunday, November 24, 2024
No menu items!
HomeNatureThe genomic natural history of the aurochs

The genomic natural history of the aurochs

  • van Vuure, C. & van Vuure, T. Retracing the Aurochs: History, Morphology and Ecology of an Extinct Wild Ox (Pensoft Publishers, 2005).

  • de Carvalho, C. N. et al. Aurochs roamed along the SW coast of Andalusia (Spain) during Late Pleistocene. Sci. Rep. 12, 9911 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X., Flynn, L. J. & Fortelius, M. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (Columbia Univ. Press, 2013).

  • Schulz, E. & KaiSer, T. M. Feeding strategy of the Urus Bos primigenius BOJANUS, 1827 from the Holocene of Denmark. Cour. Forsch. Inst. Senckenberg 259, 155–164 (2007).


    Google Scholar
     

  • Bro-Jørgensen, M. H. et al. Ancient DNA analysis of Scandinavian medieval drinking horns and the horn of the last aurochs bull. J. Archaeol. Sci. 99, 47–54 (2018).

    Article 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, J. F. et al. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proc. Biol. Sci. 263, 1467–1473 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Troy, C. S. et al. Genetic evidence for Near-Eastern origins of European cattle. Nature 410, 1088–1091 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. D. E. et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 16, 234 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verdugo, M. P. et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 365, 173–176 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginja, C. et al. Iron age genomic data from Althiburos – Tunisia renew the debate on the origins of African taurine cattle. iScience 26, 107196 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svendsen, J. I. et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004).

    Article 

    Google Scholar
     

  • Wright, E. in Cattle and People: Interdisciplinary Approaches to an Ancient Relationship (eds Wright, E. & Ginja, C.) 3–27 (Lockwood Press, 2022).

  • Hewitt, G. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112 (1999).

    Article 

    Google Scholar
     

  • Linseele, V. Size and size change of the African aurochs during the Pleistocene and Holocene. J. Afr. Archaeol. 2, 165–185 (2004).

    Article 

    Google Scholar
     

  • Lefèvre, D., Raynal, J.-P., Vernet, G., Kieffer, G. & Piperno, M. Tephro-stratigraphy and the age of ancient Southern Italian Acheulean settlements: the sites of Loreto and Notarchirico (Venosa, Basilicata, Italy). Quat. Int. 223–224, 360–368 (2010).

    Article 

    Google Scholar
     

  • Pereira, A. et al. The earliest securely dated hominin fossil in Italy and evidence of Acheulian occupation during glacial MIS 16 at Notarchirico (Venosa, Basilicata, Italy). J. Quat. Sci. 30, 639–650 (2015).

    Article 

    Google Scholar
     

  • Cassoli, P. F., Di Stefano, G. & A., T. in Notarchirico: Un Sito del Pleistocene Medio Iniziale nel Bacino (ed. di Piperno, M.) 361–438 (Osanna, 1999).

  • Lambeck, K., Esat, T. M. & Potter, E.-K. Links between climate and sea levels for the past three million years. Nature 419, 199–206 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10, 3713 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otvos, E. G. The Last Interglacial Stage: definitions and marine highstand, North America and Eurasia. Quat. Int. 383, 158–173 (2015).

    Article 

    Google Scholar
     

  • Leonardi, M., Boschin, F., Boscato, P. & Manica, A. Following the niche: the differential impact of the last glacial maximum on four European ungulates. Commun. Biol. 5, 1038 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helmens, K. F. The Last Interglacial–Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe. Quat. Sci. Rev. 86, 115–143 (2014).

    Article 

    Google Scholar
     

  • Kosintsev, P. A. & Bachura, O. P. Late Pleistocene and Holocene mammal fauna of the Southern Urals. Quat. Int. 284, 161–170 (2013).

    Article 

    Google Scholar
     

  • Robin, M. et al. Ancient mitochondrial and modern whole genomes unravel massive genetic diversity loss during near extinction of Alpine ibex. Mol. Ecol. 31, 3548–3565 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, W. et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc. Natl Acad. Sci. USA 109, E2382–E2390 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lord, E. et al. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol. Evol. 22, 126 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, C., Huerta-Sanchez, E., Casey, F. & Bradley, D. G. Cattle demographic history modelled from autosomal sequence variation. Phil. Trans. R. Soc. B 365, 2531–2539 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinding, M.-H. S. et al. Kouprey (Bos sauveli) genomes unveil polytomic origin of wild Asian Bos. iScience 24, 103226 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergman, J. et al. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. Nat. Commun. 14, 7679 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erven, J. A. M. et al. A high-coverage Mesolithic aurochs genome and effective leveraging of ancient cattle genomes using whole genome imputation. Mol. Biol. Evol. 41, msae076 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacLeod, I. M., Larkin, D. M., Lewin, H. A., Hayes, B. J. & Goddard, M. E. Inferring demography from runs of homozygosity in whole-genome sequence, with correction for sequence errors. Mol. Biol. Evol. 30, 2209–2223 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clutton-Brock, T. Mammal Societies (Wiley, 2016).

  • Cubric-Curik, V. et al. Large‐scale mitogenome sequencing reveals consecutive expansions of domestic taurine cattle and supports sporadic aurochs introgression. Evol. Appl. 15, 663–678 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makarewicz, C. & Tuross, N. Finding fodder and tracking transhumance: isotopic detection of goat domestication processes in the Near East. Curr. Anthropol. 53, 495–505 (2012).

    Article 

    Google Scholar
     

  • Bollongino, R. et al. Modern taurine cattle descended from small number of near-eastern founders. Mol. Biol. Evol. 29, 2101–2104 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheu, A. et al. The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genet. 16, 54 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upadhyay, M. R. et al. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity 118, 169–176 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshall, F. B., Dobney, K., Denham, T. & Capriles, J. M. Evaluating the roles of directed breeding and gene flow in animal domestication. Proc. Natl Acad. Sci. USA 111, 6153–6158 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Götherström, A. et al. Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proc. Biol. Sci. 272, 2345–2350 (2005).

    PubMed 

    Google Scholar
     

  • Achilli, A. et al. The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS One 4, e5753 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R.Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–543 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattiangeli, V., Cassidy, L. M., Daly, K. G., Mullin, V. E. & Verdugo, M. Multi-step ancient DNA extraction protocol for bone and teeth. Protocols.io https://doi.org/10.17504/protocols.io.6qpvr45b2gmk/v1 (2023).

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boessenkool, S. et al. Combining bleach and mild predigestion improves ancient DNA recovery from bones. Mol. Ecol. Resour. 17, 742–751 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattiangeli, V., Cassidy, L. M., Daly, K. G. & Mullin, V. E. Bleach extraction protocol: damaged or degraded DNA recovery from bone or tooth powder. Protocols.io https://doi.org/10.17504/protocols.io.8epv5j88nl1b/v1 (2023).

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8, 16082 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carøe, C. et al. Single‐tube library preparation for degraded DNA. Methods Ecol. Evol. 9, 410–419 (2018).

    Article 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41, e129 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview Version 5: a multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. Methods Mol. Biol. 2231, 241–260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, T.-C., Yang, Y., Retzel, E. F. & Liu, W.-S. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. Proc. Natl Acad. Sci. USA 110, 12373–12378 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiffels, S. & Wang, K. MSMC and MSMC2: the Multiple Sequentially Markovian Coalescent. Methods Mol. Biol. 2090, 147–166 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, N. et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 9, 2337 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 8, 551–566 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maier, R. et al. On the limits of fitting complex models of population history to f-statistics. eLife 12, e85492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments