Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
Kloekhorst, A. in The Indo-European Puzzle Revisited: Integrating Archaeology, Genetics, and Linguistics (eds Kristiansen, K. et al.) 42–60 (Cambridge Univ. Press, 2023).
Kroonen, G., Barjamovic, G. & Peyrot, M. Linguistic supplement to Damgaard et al. 2018: Early Indo-European languages, Anatolian, Tocharian and Indo-Iranian. Zenodo https://doi.org/10.5281/zenodo.1240524 (2018).
Anthony, D. W. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007).
Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).
Narasimhan V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).
Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).
Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).
Allentoft, M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311 (2024).
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
Lazaridis, I. et al. Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia. Science 377, 982–987 (2022).
Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant and Southern Caucasus. Cell 181, 1158–1175 (2020).
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
Nikitin, A. G. et al. A genomic history of the North Pontic Region from the Neolithic to the Bronze Age. https://doi.org/10.1038/s41586-024-08372-2 (2025).
Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).
Zeng, T. C. et al. Postglacial genomes from foragers across Northern Eurasia reveal prehistoric mobility associated with the spread of the Uralic and Yeniseian languages. Nature (in press).
Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023).
Vybornov, A. et al. Diet and chronology of Neolithic–Eneolithic cultures (from 6500 to 4700 cal BC) in the Lower Volga Basin. Radiocarbon 60, 1597–1610 (2018).
Gimbutas, M. The Prehistory of Eastern Europe (Peabody Museum, 1956).
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
Anthony, D. W. et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehist. Z. 97, 22–67 (2022).
Penske, S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 620, 358–365 (2023).
Nikitin, A. G., Ivanova, S., Culleton, B. J., Potekhina, I. & Reich, D. New radiocarbon and stable isotope data from the Usatove culture site of Mayaky in Ukraine. SSRN https://doi.org/10.2139/ssrn.4236123 (2023).
Govedarica, B. & Manzura, I. The Giurgiulesti cemetery in chronological and cultural context of Southeastern and Eastern Europe. Eurasia Antiqua 22, 1–39 (2016).
Skorobogatov, A. M. Pamyatniki Neolita I Eneolita v Ust’e Chernoi Kalitvy. Trudy Voronezhskogo Oblastnogo Kraevedcheskogo Muzeiya Vyp. 3, 47–53 (2019).
Skorobogatov, A. M. & Smol’janinov, R. V. Srednestogovskie materialy v bassejne Verhnego i Srednego Dona. Rossiyskaya arkheologiya 2013, 126–136 (2013).
Shishlina, N. I. et al. Paleoecology, subsistence, and 14C chronology of the Eurasian Caspian steppe Bronze Age. Radiocarbon 51, 481–499 (2009).
Korenevskii, S. N. Rozhdenie Kurgana (Taus, 2012).
Zhur, K. V. et al. Human DNA from the oldest Eneolithic cemetery in Nalchik points the spread of farming from the Caucasus to the Eastern European steppes. iScience https://doi.org/10.1016/j.isci.2024.110963 (2024).
Altınışık, N. E. et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic transition. Sci. Adv. https://doi.org/10.1126/sciadv.abo3609 (2022).
de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).
Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).
Lazaridis, I. The evolutionary history of human populations in Europe. Curr. Opin. Genet. Dev. 53, 21–27 (2018).
Kassian, A. S. et al. Rapid radiation of the inner Indo-European languages: an advanced approach to Indo-European lexicostatistics. Linguistics 59, 949–979 (2021).
Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. https://doi.org/10.1016/j.cub.2021.03.050 (2021).
Egfjord, A. F.-H. et al. Genomic steppe ancestry in skeletons from the Neolithic single grave culture in Denmark. PLoS ONE 16, e0244872 (2021).
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022).
A genetic probe into the ancient and medieval history of Southern Europe and West Asia. Science 377, 940–951 (2022).
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024).
Fournier, R., Tsangalidou, Z., Reich, D. & Palamara, P. F. Haplotype-based inference of recent effective population size in modern and ancient DNA samples. Nat. Commun. 14, 7945 (2023).
Fowler, C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587 (2022).
Shishlina, N. Reconstruction of the Bronze Age of the Caspian steppes: Life Styles and Life Ways of Pastoral Nomads (British Archaeological Reports, 2008).
Olander, T. Indo-European cladistic nomenclature. Indogermanische Forschungen 124, 231–244 (2019).
Anthony, D. W. & Ringe, D. The Indo-European homeland from linguistic and archaeological perspectives. Annu. Rev. Linguist. 1, 199–219 (2015).
Pronk, T. C. Indo-European secondary products terminology and the dating of Proto-Indo-Anatolian. J. Indo-European Stud. 49, 141–170 (2022).
Ringe, D., Warnow, T. & Taylor, A. Indo-European and computational cladistics. Trans. Philol. Soc. 100, 59–129 (2002).
Saag, L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 7, eabd6535 (2021).
Kroonen, G., Jakob, A., Palmér, A. I., van Sluis, P. & Wigman, A. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages. PLoS ONE 17, e0275744 (2022).
Kristiansen, K. in Dispersals and Diversification: Linguistic and Archaeological Perspectives on the Early Stages of Indo-European (eds Serangeli, M. & Olander, T.) 157–165 (Brill, 2019).
Massicotte, P. & South, A. rnaturalearth: World map data from Natural Earth. https://docs.ropensci.org/rnaturalearth/ (2024).
Cassidy, L. M. et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388 (2020).
Järve, M. et al. Shifts in the genetic landscape of the Western Eurasian steppe associated with the beginning and end of the Scythian Dominance. Curr. Biol. 29, 2430–2441 (2019).
Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s eastern steppe. Cell 183, 890–904 (2020).
Kumar, V. et al. Bronze and Iron Age population movements underlie Xinjiang population history. Science 376, 62–69 (2022).
Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2022).
Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).
Zhang, F. et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 599, 256–261 (2021).
Wang, C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021).
Gelabert, P. et al. Genomes from Verteba cave suggest diversity within the Trypillians in Ukraine. Sci. Rep. 12, 7242 (2022).
Mattila, T. M. et al. Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. Commun. Biol. 6, 793 (2023).
Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat. Protoc. 14, 1194–1205 (2019).
Sirak, K. A. et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62, 283–289 (2017).
Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci Rep. 5, 11184 (2015).
Sirak, K. et al. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res. 30, 427–436 (2020).
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015).
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).
Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).
Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).
Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
Rohland, N. et al. Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome Res. 32, 2068–2078 (2022).
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Shinde, V. et al. An ancient Harappan genome lacks ancestry from steppe pastoralists or Iranian farmers. Cell 179, 729–735 (2019).
Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).
Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).
Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).
Adamov, D., Gurianov, V. M., Karzhavin, S., Tagankin, V. & Urasin, V. Defining a new rate constant for Y-chromosome SNPs based on full sequencing data. Russian J. Genet. Geneal. 7, 1920–2997 (2015).
Sinnott, R. W. Virtues of the Haversine. Sky Telescope 68, 158 (1984).
Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).
Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).